EE16B, Spring 2018 UC Berkeley EECS

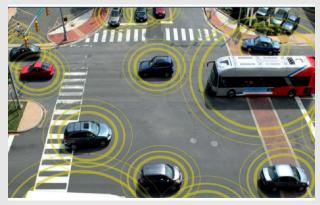
Maharbiz and Roychowdhury

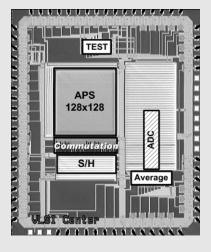
Lecture 4A: Overview Slides

State Space Representations

Systems

- Previously: circuits
- Now: systems
 - circuits + more: a broader concept

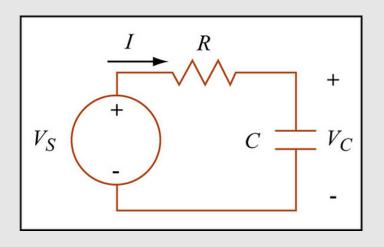


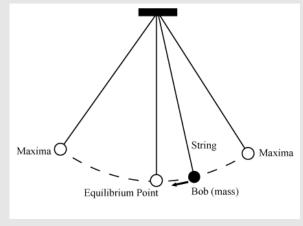


- Can be enormously complex
 - multi-domain
 - → EE (control, comm., computing, ...)
 - → mech., chem., optical, ...
 - hierarchy of sub-systems

Simpler Systems

... easier to understand and to work with



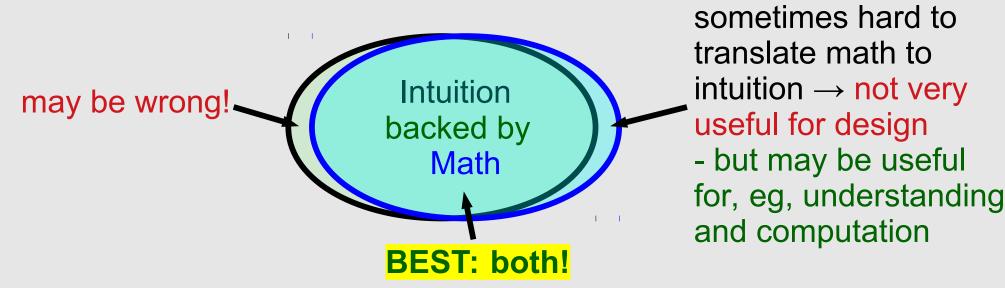


$$4H + O_2 \stackrel{k_1}{\rightleftharpoons} H_2O$$

Even small and simple systems can do interesting things

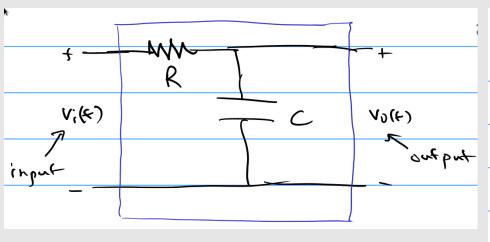
A Note about Intuition vs Math

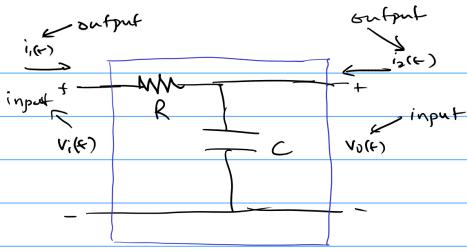
- Proper intuition: extremely important
 - quickly make mental leaps to solve problems and design new things
 - ... avoiding confusion that can arise from masses of detail
- Intuition doesn't arise magically
 - mathematics: essential for in-depth understanding
 - → math + experience and practice → intuition



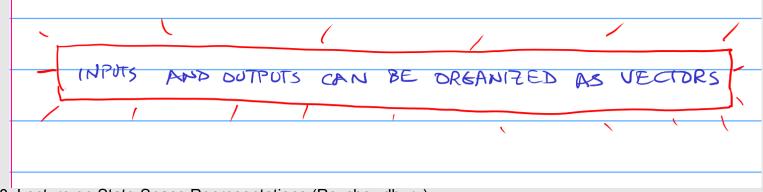
Inputs and Outputs as VECTORS

(move to xournal)



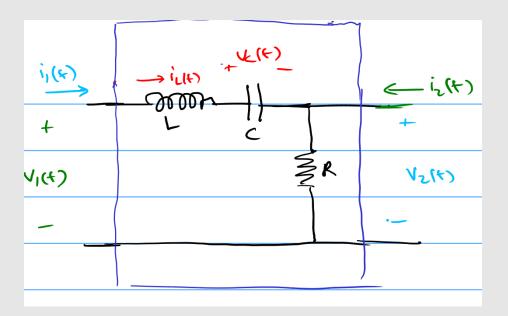


$$\vec{v}(t) = \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix}; \quad \vec{y}(t) = \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix}$$
vector of inputs



The Internal State

(move to xournal)



$$\overrightarrow{\mathcal{V}}(t) = \begin{bmatrix} V_{1}(t) \\ i_{1}(t) \end{bmatrix} \qquad \overrightarrow{\mathcal{Y}}(t) = \begin{bmatrix} V_{2}(t) \\ i_{1}(t) \end{bmatrix}$$

$$\overrightarrow{\mathcal{X}}(t) = \begin{bmatrix} V_{2}(t) \\ i_{1}(t) \end{bmatrix}$$

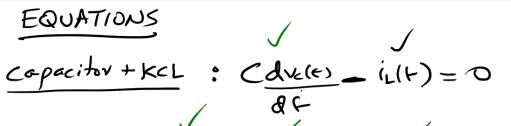
$$\overrightarrow{\mathcal{X}}(t) = \begin{bmatrix} V_{2}(t) \\ i_{1}(t) \end{bmatrix}$$

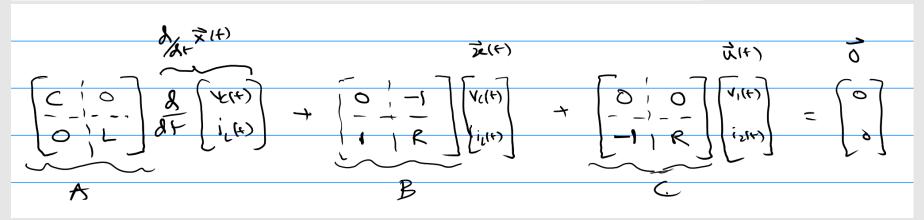
- Internal voltages/currents (unknowns): the state
 - also written as a vector: $\vec{x}(t)$

The System's Equations

INTERNAL UNKNOWNS (STATE)

(move to xournal)





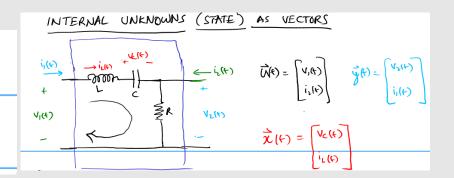
$$\frac{d}{dt} \begin{bmatrix} v_{c}(t) \\ v_{L}(t) \end{bmatrix} = \begin{bmatrix} v_{c}(t) \\ -v_{L} & -R/L \end{bmatrix} \begin{bmatrix} v_{c}(t) \\ v_{L}(t) \end{bmatrix} + \begin{bmatrix} v_{c}(t) \\ v_{L} & -R/L \end{bmatrix} \begin{bmatrix} v_{c}(t) \\ v_{L} & -$$

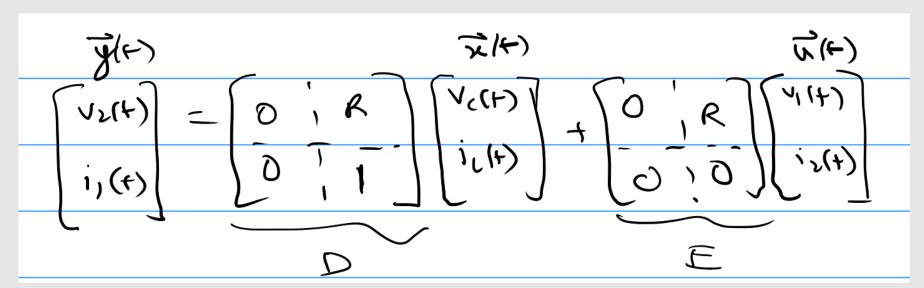
can be written using the input and state vectors

The Outputs

(move to xournal)

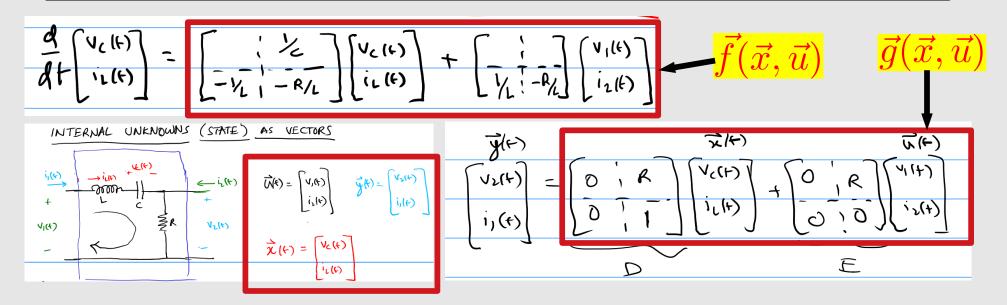
$$V_2(t) = R(i_L(t) + i_2(t))$$
 $i_1(t) = i_L(t)$





also expressed using the input and state vectors

State+Output Eqns Together

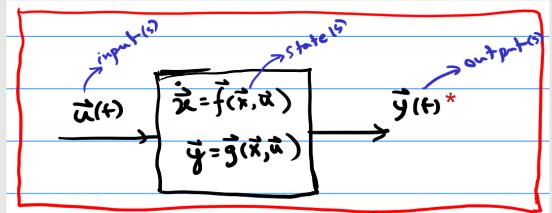


• general form:

$$\frac{d}{dt}\vec{x}(t) = \vec{f}(\vec{x}(t), \vec{u}(t)),$$

$$\vec{y}(t) = \vec{g}(\vec{x}(t), \vec{u}(t))$$

+ initial condition (IC)

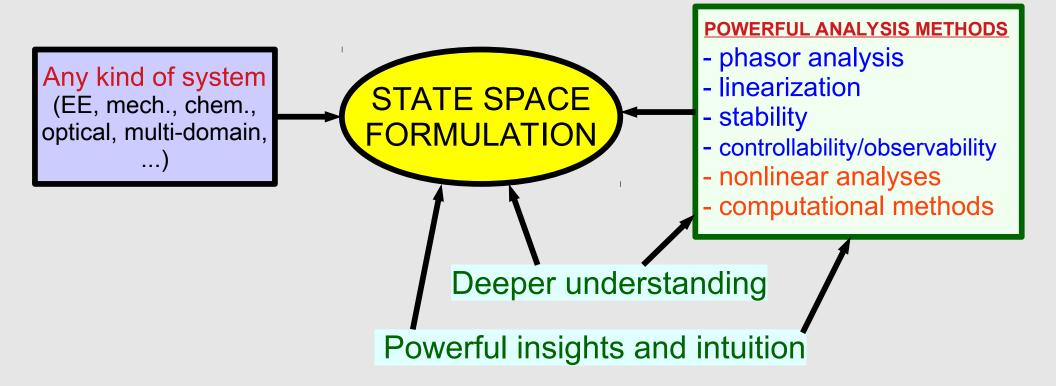


STATE SPACE FORMULATION

if not explicitly given, the entire state will be the output.

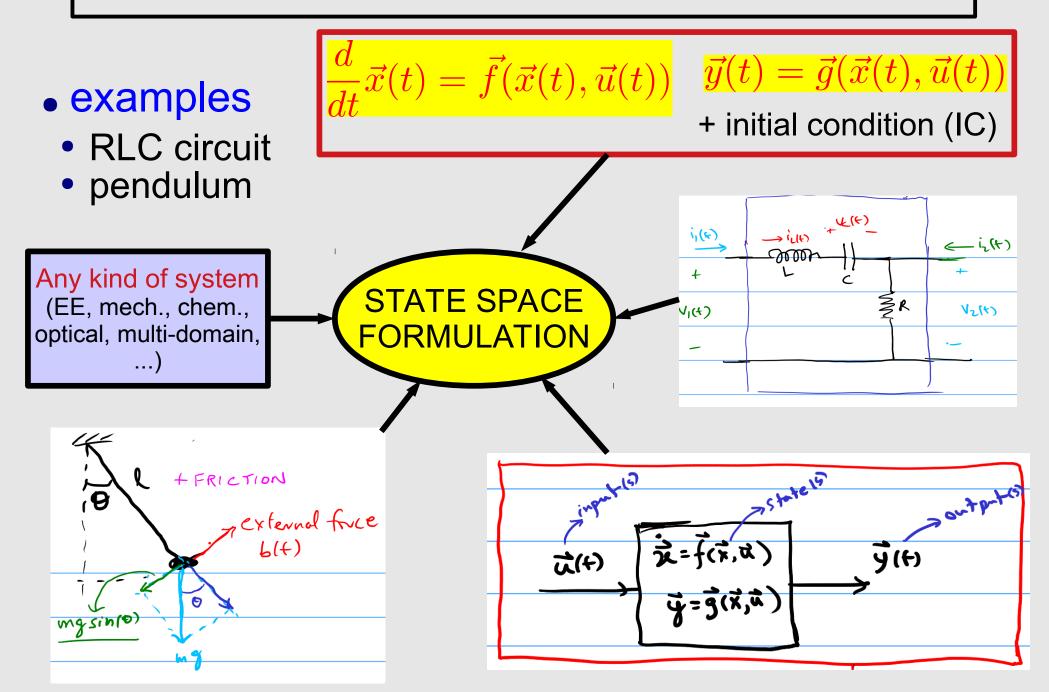
State Space Formulation: Benefits

- why is it useful?
 - any circuit can be written like this (not just this one)*
 - however big or complicated
 - not just circuits any system* from any domain!
 - → including multi-domain systems



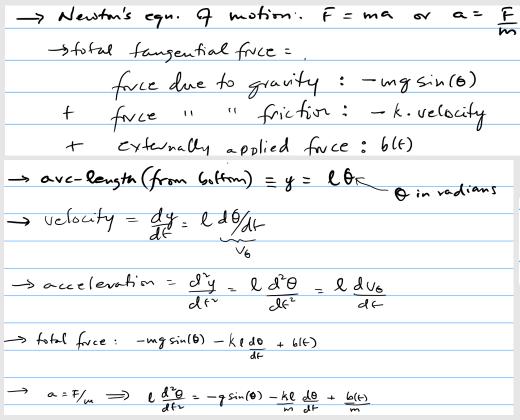
* some additional generalization needed – won't cover in this class

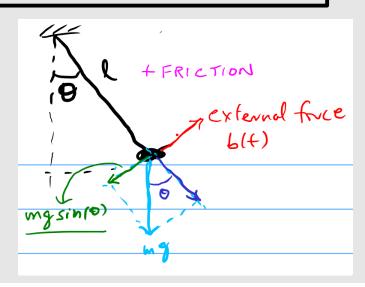
Previous Lecture



Mechanical Example: Pendulum

(move to xournal)





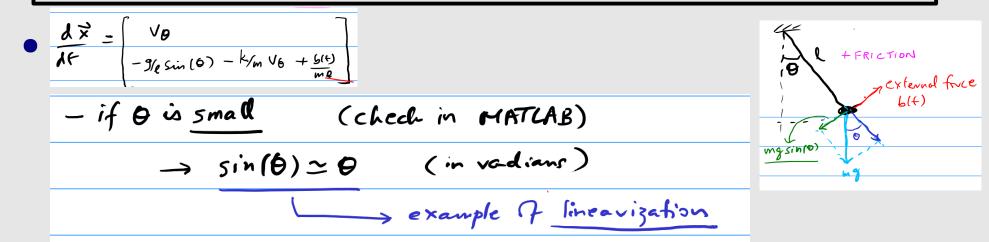
$$\frac{d^2\theta}{dt^2} = -\frac{9}{2} \sin(\theta) - \frac{k}{m} \frac{d\theta}{dt} + \frac{b(t)}{m\ell}$$

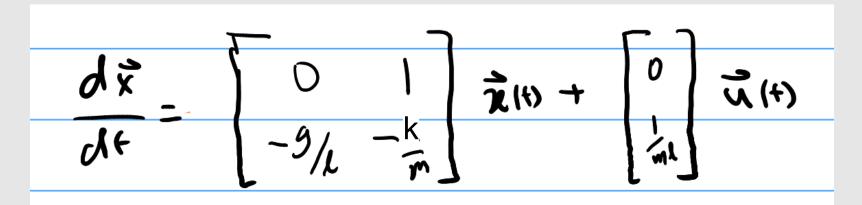
$$\vec{\lambda} = \begin{bmatrix} \theta \\ v_{\theta} \end{bmatrix}, \vec{u} = \begin{bmatrix} b(t) \end{bmatrix}$$

$$\frac{d\vec{x}}{dt} = \begin{bmatrix} \sqrt{6} \\ -9/e \sin(6) - k/m \sqrt{6} + \frac{6(t)}{me} \end{bmatrix}$$

The system is nonlinear (because of sin(...))

Pendulum: simplification for small θ





• Does this look familiar?

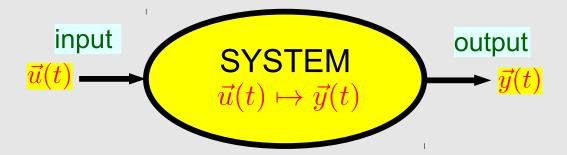
$$\frac{d}{dt} \begin{bmatrix} v_{\ell}(t) \\ v_{\ell}(t) \end{bmatrix} = \begin{bmatrix} v_{\ell}(t) \\ v_{\ell}(t) \end{bmatrix} + \begin{bmatrix} v_{\ell}(t) \\ v_{\ell}(t) \end{bmatrix} + \begin{bmatrix} v_{\ell}(t) \\ v_{\ell}(t) \end{bmatrix}$$

INSIGHT: RLC ckt and damped pendulum are "the same"!

MEMS filters! (smaller, better, cheaper)

Recap of Linearity

- The concept of LINEARITY is extremely important
 - it is fundamentally a systems concept



- 3 steps to check linearity
 - clearly identify your inputs and outputs (this affects linearity)
 - check superposition
 - if $\vec{u}_1(t) \mapsto \vec{y}_1(t)$ and $\vec{u}_2(t) \mapsto \vec{y}_2(t)$, then $(\vec{u}_1(t) + \vec{u}_2(t)) \mapsto (\vec{y}_1(t) + \vec{y}_2(t))$, $\forall \vec{u}_1(t), \vec{u}_2(t)$
 - check scaling
 - if $\vec{u}(t) \mapsto \vec{y}(t)$, then $(\alpha \vec{u}(t)) \mapsto (\alpha \vec{y}(t))$, $\forall \vec{u}(t)$ and $\forall \alpha \in \Re$

Linearity of State Space Formulations

• general S.S.F:
$$\frac{d}{dt}\vec{x}(t) = \vec{f}(\vec{x}(t), \vec{u}(t)), \ \vec{y}(t) = \vec{g}(\vec{x}(t), \vec{u}(t))$$

matrices

• If
$$\vec{f}(\vec{x}(t), \vec{u}(t)) \equiv A\vec{x}(t) + B\vec{u}(t)$$
 and $\vec{q}(\vec{x})$

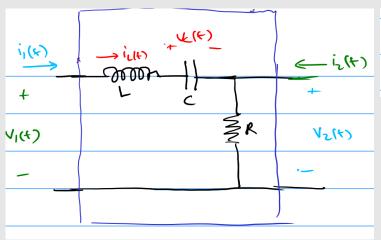
 $\vec{g}(\vec{x}(t), \vec{u}(t)) \equiv C\vec{x}(t) + D\vec{u}(t)$

matrices

then the system is linear

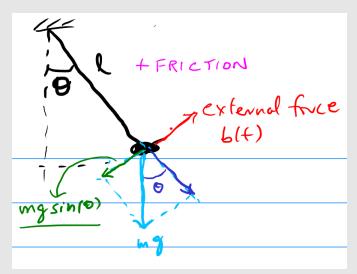
Proof?

Are these Systems Linear?



$$\frac{d}{dt} \begin{bmatrix} v_{c}(t) \\ i_{L}(t) \end{bmatrix} = \begin{bmatrix} i \\ -v_{L} \\ -R/L \end{bmatrix} \begin{bmatrix} v_{c}(t) \\ i_{L}(t) \end{bmatrix} + \begin{bmatrix} i \\ v_{L}(t) \\ v_{L}(t) \end{bmatrix} \begin{bmatrix} v_{1}(t) \\ i_{2}(t) \end{bmatrix}$$

$$\begin{array}{c|c}
\overrightarrow{y}(t) & \overrightarrow{x}(t) \\
\hline
(v_{\lambda}(t)) &= \begin{bmatrix} 0 & 1 & R & V_{\lambda}(t) \\ 0 & 1 & I & I_{\lambda}(t) \end{bmatrix} + \begin{bmatrix} 0 & 1 & R & V_{\lambda}(t) \\ 0 & 1 & I & I_{\lambda}(t) \end{bmatrix} \\
\hline
(i_{\lambda}(t)) & D & E
\end{array}$$



$$\dot{\lambda} = \begin{bmatrix} \theta \\ v_{\theta} \end{bmatrix}, \quad \dot{u} = \begin{bmatrix} b(f) \end{bmatrix}$$

$$\frac{d \times d}{d + \frac{5(4)}{me}}$$

$$\frac{d}{dt}\vec{x}(t) = \begin{bmatrix} v_{\theta} \\ -\frac{g}{l}\theta - \frac{k}{m}v_{\theta} + \frac{b(t)}{ml} \end{bmatrix}$$

State Space F. for Discrete Time Systems

- What is a discrete-time system?
 - example: compound interest
 - → (move to xournal)

```
- Example: compand interest

- Principal P

- Annual varie of interest Y, companded monthly.

- Savings S[E] = S[t-1] + Y S[t-1]

With S[s] = P = INITIAL CONDITION

- Additions/withdrawls each month: u[t]

- S[t] = S[t-1] + Y S[t-1] + u[t]

- with S[s] = P

DISCRETE TIME
```

STATE SPACE FORMULATION

 Discrete time sometimes more natural (eg, for finance, social dynamics, ...)

Another D.T. Example: Profs. and PhDs.

(move to xournal)

-
$$p[t+i] = p[t] - \delta p[t] + \delta r[t]$$

- $\gamma (t+1) = \gamma (t) - \delta \gamma (t) - \gamma \gamma (t) + p[t] w[t]$
- State space vept.?
 $\chi(t) = \gamma(t)$; $\chi(t) = \gamma(t-\delta) + \gamma \gamma$
 $\chi(t) = \gamma(t)$; $\chi(t-\delta-\gamma) + \gamma \gamma$

• Linear?

VECTOR D.T. STATE-SPACE FORMULATION