EE16B, Spring 2018 UC Berkeley EECS

Maharbiz and Roychowdhury

Lectures 4B & 5A: Overview Slides

Linearization and Stability

Linearization

- Approximate a nonlinear system by a linear one
 - → (unless it's linear to start with)
 - then apply powerful linear analysis tools
 - → gain precise understanding → insight and intuition
- Consider a scalar system first
 - in state space form with additive input (for simplicity)

$$\frac{d}{dt}x(t) = f(x(t)) + u(t)$$

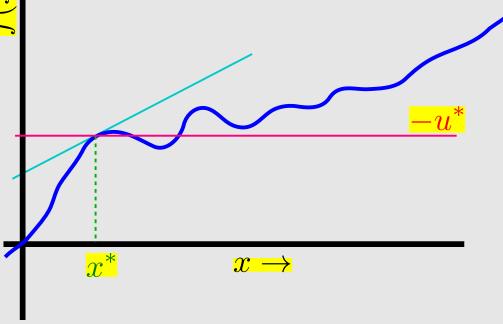
f(x)

step 1: choose DC input u*

→ find DC soln. x*

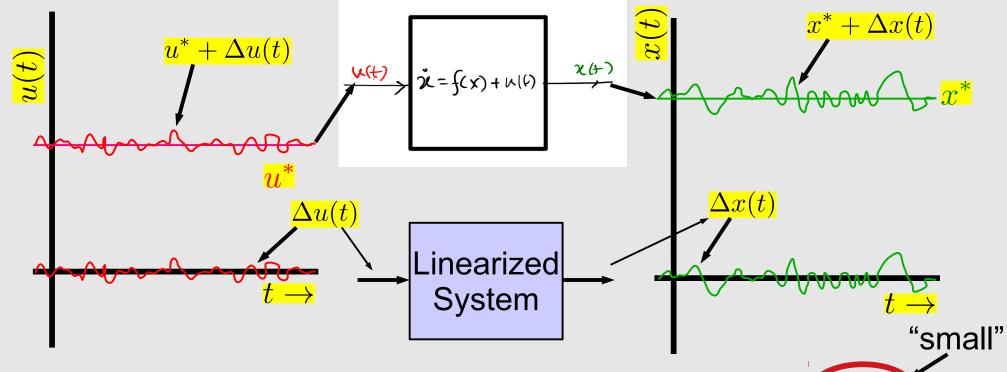
$$0 = f(x^*) + u^*$$
: solve for x^*

- → x* is an equilibrium point
 - aka DC operating point
 - for input u*



Linearization (contd. - 2)

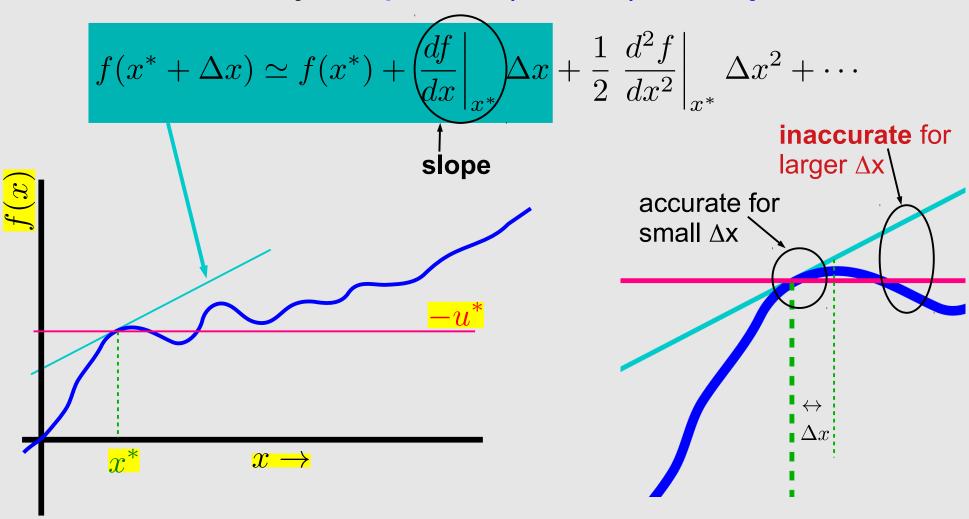
• DC operation (equilibrium), viewed in time



- Now, perturb the input <u>a little</u>: $u(t) = u^* + \Delta u(t)$
- Suppose x(t) responds by also changing a little
 - $x(t) = x^* + \Delta x(t)$ ASSUMED "small"
- Goal: find system relating $\Delta u(t)$ and $\Delta x(t)$ directly

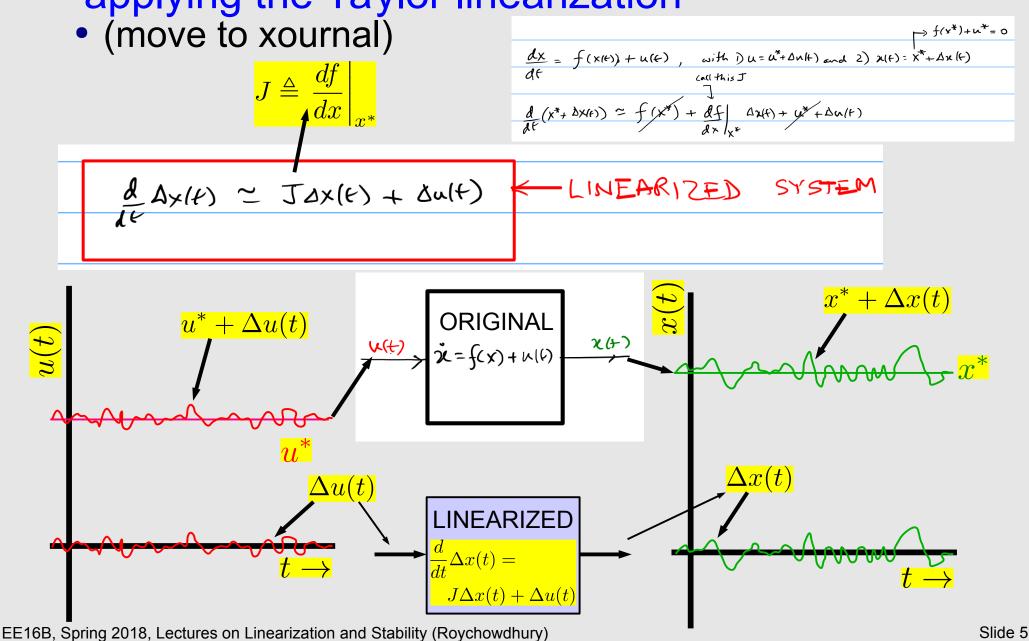
Linearization (contd. - 3)

- Basic notion: replace f(x) by its tangent line at x*
- Mathematically: expand f(x*+∆x) in Taylor Series



Linearization (contd. - 4)

applying the Taylor linearization



Linearization of Vector S.S. Systems

- Now: the full S.S.R: $\frac{d}{dt}\vec{x}(t) = \vec{f}(\vec{x}(t), \vec{u}(t))$
- step 1: find a DC. op. pt. (equilibrium pt.)
 - $\vec{0} = \vec{f}(\vec{x}^*, \vec{u}^*)$ DC input Solving for this is often difficult, even using computational methods
- The linearized system is (see handwritten notes for derivation)

$$\frac{d}{dt} \Delta \vec{x}(t) = J_x(\vec{x}^*, \vec{u}^*) \Delta \vec{x}(t) + J_u(\vec{x}^*, \vec{u}^*) \Delta \vec{u}(t)$$
n-vector nxn matrix

nxm matrix

nxm matrix

- What are J_x and J_u ?
 - called Jacobian or gradient matrices

Jacobian (Gradient) Matrices

• If:
$$\vec{x}(t) = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
, $\vec{u}(t) = \begin{bmatrix} u_1 \\ \vdots \\ u_m \end{bmatrix}$, $\vec{f}(\vec{x}, \vec{u}) = \begin{bmatrix} f_1(x_1, \cdots, x_n; u_1, \cdots, u_m) \\ \vdots \\ f_n(x_1, \cdots, x_n; u_1, \cdots, u_m) \end{bmatrix}$, then

$\mathbf{J}_{x}(\vec{x},\vec{u}) = \nabla_{x}\vec{f}(\vec{x},\vec{u}) = \frac{\partial \vec{f}}{\partial \vec{x}}\bigg|_{\vec{x},\vec{u}} \stackrel{\triangle}{=} \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n-1}} & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n-1}} & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{\partial f_{n-1}}{\partial x_{1}} & \frac{\partial f_{n-1}}{\partial x_{2}} & \frac{\partial f_{n-1}}{\partial x_{2}} & \cdots & \frac{\partial f_{n-1}}{\partial x_{n-1}} & \frac{\partial f_{n-1}}{\partial x_{n}} \\ \frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n-1}} & \frac{\partial f_{n}}{\partial x_{n}} \end{bmatrix}$

$$\frac{\partial x_1}{\partial f_2}$$
 $\frac{\partial x_2}{\partial x_2}$ \cdots $\frac{\partial x_{n-1}}{\partial f_2}$

$$\frac{\partial f_{n-1}}{\partial x_1} \quad \frac{\partial f_{n-1}}{\partial x_2} \quad \cdots \quad \frac{\partial f_{n-1}}{\partial x_{n-1}}$$

$$\frac{f_n}{x_1}$$
 $\frac{\partial f_n}{\partial x_2}$ \cdots $\frac{\partial x_{n-1}}{\partial x_{n-1}}$ $\frac{\partial f_n}{\partial x_n}$

$$\mathbf{J}_{u}(\vec{x},\vec{u}) = \nabla_{u}\vec{f}(\vec{x},\vec{u}) = \left. \frac{\partial \vec{f}}{\partial \vec{u}} \right|_{\vec{x},\vec{u}} \triangleq \begin{bmatrix} \frac{\partial u_{1}}{\partial f_{2}} & \frac{\partial u_{2}}{\partial u_{2}} & \cdots & \frac{\partial u_{m-1}}{\partial f_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{n-1}}{\partial u_{1}} & \frac{\partial f_{n-1}}{\partial u_{2}} & \cdots & \frac{\partial f_{n-1}}{\partial u_{m-1}} \\ \frac{\partial f_{n}}{\partial u_{1}} & \frac{\partial f_{n}}{\partial u_{2}} & \cdots & \frac{\partial f_{n}}{\partial u_{m-1}} \end{bmatrix}$$
 E16B, Spring 2018, Lectures on Linearization and Stability (Roychowdhury)

$$\frac{\partial f_1}{\partial u_1} \qquad \frac{\partial f_1}{\partial u_2} \qquad \cdots \qquad \frac{\partial f_1}{\partial u_{m-1}} \qquad \frac{\partial f_1}{\partial u_m} \\
\frac{\partial f_2}{\partial u_1} \qquad \frac{\partial f_2}{\partial u_2} \qquad \cdots \qquad \frac{\partial f_2}{\partial u_{m-1}} \qquad \frac{\partial f_2}{\partial u_m}$$

$$\frac{f_{n-1}}{\partial u_1} \quad \frac{\partial f_{n-1}}{\partial u_2} \quad \cdots \quad \frac{\partial f_{n-1}}{\partial u_{m-1}} \quad \frac{\partial f_n}{\partial u}$$

$$\frac{\partial f_n}{\partial u_1} \quad \frac{\partial f_n}{\partial u_2} \quad \cdots \quad \frac{\partial f_n}{\partial u_{m-1}} \quad \frac{\partial f_n}{\partial u}$$

EE16B. Spring 2018, Lectures on Linearization and Stability (Roychowdhury)

Example: Linearizing the Pendulum

• Pendulum: dx =

$$\frac{d \times d}{d + \frac{5(4)}{me}}$$

(move to xournal)

$$\dot{\lambda} = \begin{bmatrix} \theta \\ v_{\theta} \end{bmatrix}, \dot{\alpha} = \begin{bmatrix} b(t) \end{bmatrix}$$

-
$$n=2$$
, $m=1$.

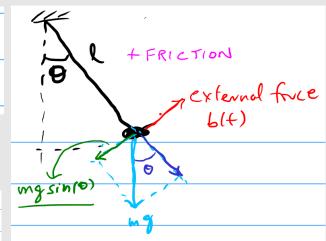
- \mathbb{Z} in part: $U(t) \equiv 0 = U^*$ (no force)

- \mathbb{Z} in part: $U(t) \equiv 0 = U^*$ (no force)

- \mathbb{Z} where \mathbb{Z} in \mathbb{Z} (\mathbb{Z}): at vest

- \mathbb{Z} metrix

- \mathbb{Z} in $\mathbb{Z$

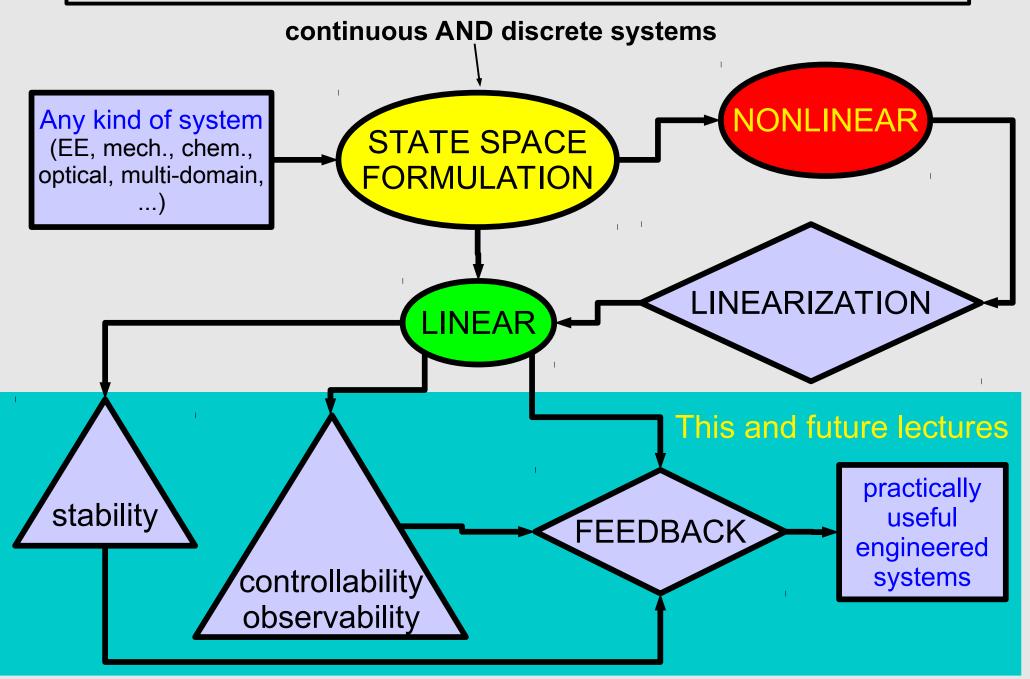


$$\frac{d\vec{x}}{dt} = \begin{bmatrix} 0 & 1 \\ -9/2 & -k/m \end{bmatrix} \vec{x} + \begin{bmatrix} 0 \\ +\frac{u(k)}{m_1} \end{bmatrix}$$

Compare against sin(θ)≈θ approximation (prev. class)

$$\frac{d\vec{x}}{dt} = \begin{bmatrix} 0 & 1 \\ -9/L & -\frac{\lambda}{m} \end{bmatrix} \vec{\chi}(t) + \begin{bmatrix} 0 \\ -\frac{\lambda}{m} \end{bmatrix} \vec{\chi}(t)$$

Where We Are Now

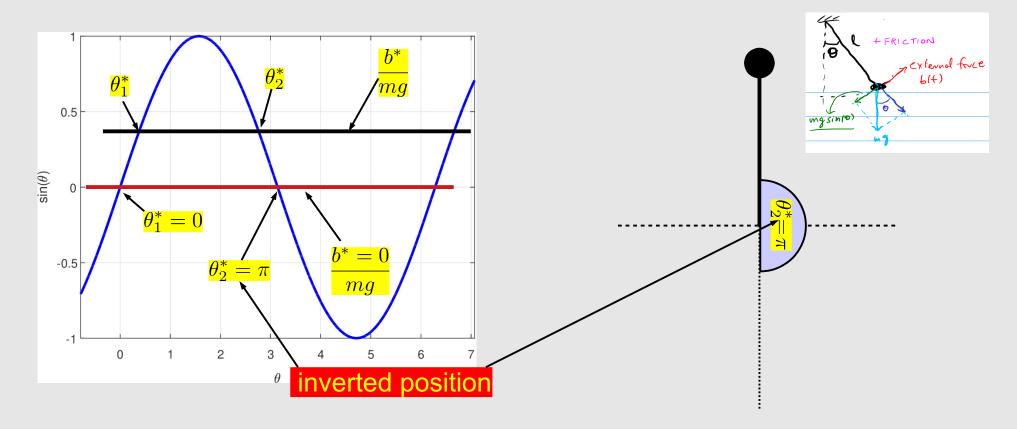


Pendulum: Inverted Solution

• Pendulum:
$$\frac{d \times = \begin{cases} \sqrt{6} \\ -9/e \sin(6) - k/m \sqrt{6} + \frac{G(4)}{me} \end{cases}$$

$$\dot{\vec{x}} = \begin{bmatrix} \theta \\ v_{\theta} \end{bmatrix}, \quad \vec{u} = \begin{bmatrix} b(\theta) \end{bmatrix}$$

• DC input: b(t) = b*
• DC solution: dx/dt =
$$0 \rightarrow v_{\theta} = 0$$
, $\frac{g}{l}\sin(\theta) = \frac{b^*}{ml} \Rightarrow \sin(\theta) = \frac{b^*}{mg}$



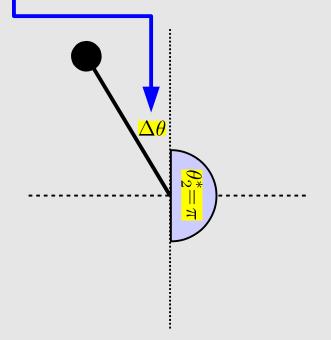
Inverted Pendulum: Linearization

$$\frac{d\vec{x} - \sqrt{90}}{16} = \frac{1}{-9\% \sin(6) - \frac{1}{2} \sin(6) + \frac{1}{2} \sin(6)}{1}$$

$$\hat{\chi} = \begin{bmatrix} 0 \\ v_0 \end{bmatrix}, \quad \hat{u} = \begin{bmatrix} b(t) \end{bmatrix}$$
 non-inverted

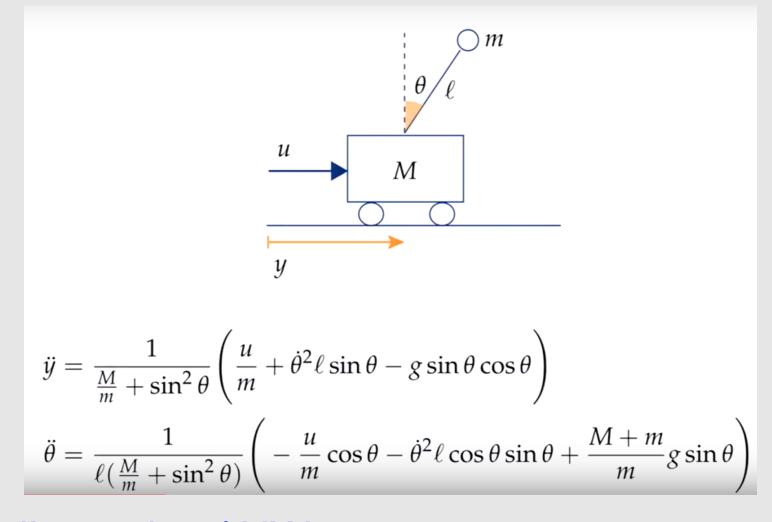
$$J_x(\vec{x}_2^*, 0) = \begin{bmatrix} 0 & 1 \\ -\frac{g}{l}\cos(\theta_2^*) & -\frac{k}{m} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ +\frac{g}{l} & -\frac{k}{m} \end{bmatrix}$$

• Linearization:
$$\frac{d}{dt}\begin{bmatrix} \Delta\theta(t) \\ \Delta v_{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ +\frac{g}{l} & -\frac{k}{m} \end{bmatrix} \begin{bmatrix} \Delta\theta(t) \\ \Delta v_{\theta}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml} \end{bmatrix} \Delta b(t)$$



Pole & Cart (Inverted Pendulum ++)

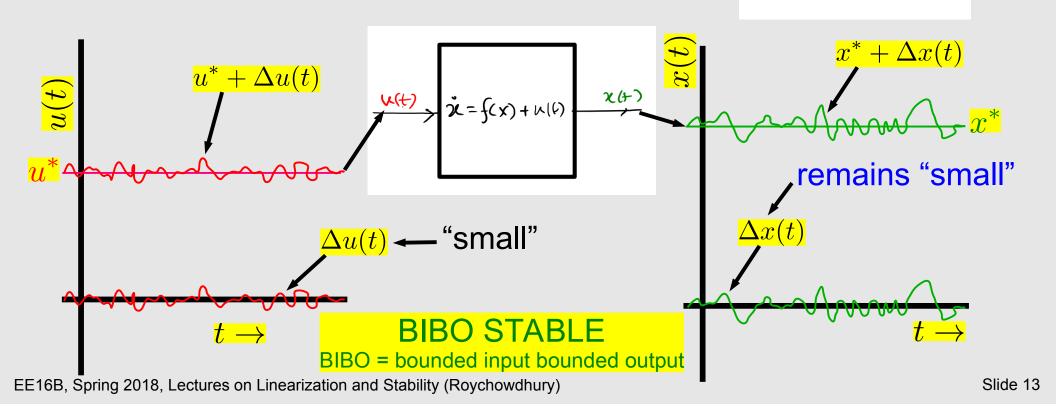
Slightly more complicated example



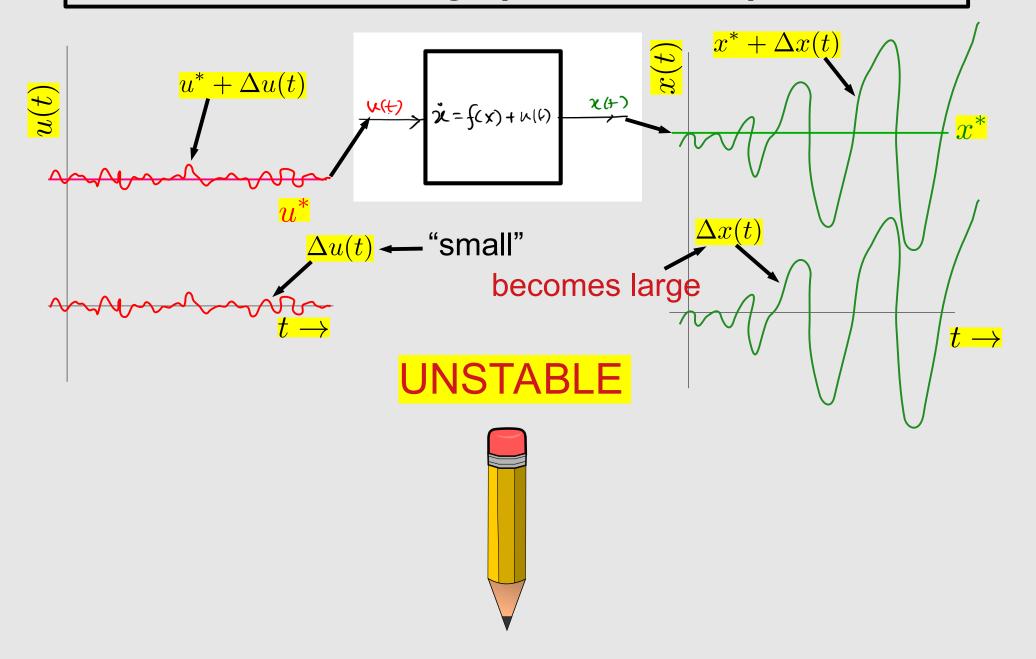
→ discussion / HW

Stability

- Basic idea: perturb system a little from equilibrium
 - does it come back? yes → STABLE
- More precisely:
 - small perturbations → small responses



Stability (contd. - 2)



Stability: the Scalar Case

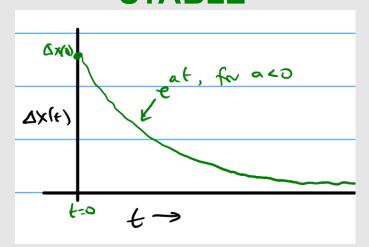
• Analysis: start w scalar case:
$$\frac{d}{dt}\Delta x(t) = a\Delta x(t) + b\Delta u(t)$$
• [already linear(ized); everything is real] input term (convolution)

input term (convolution)

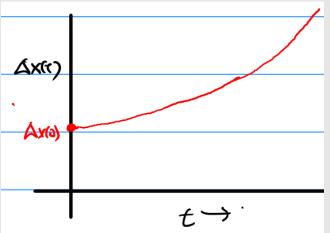
initial condition term.

- Solution: $\Delta x(t) = \frac{\Delta x(0)e^{at}}{\Delta x(0)e^{at}} + \int_0^t e^{a(t-\tau)} b\Delta u(\tau) d\tau \frac{e^{at} * (b\Delta u(t))}{e^{at}}$
 - [obtained by, eg, the method of integrating factors (Piazza: @88)]
- The initial condition term: $\Delta x(0)e^{at}$. Say $\Delta x(0) \neq 0$.

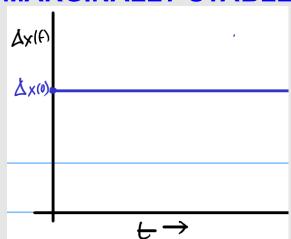
a<0: dies down **STABLE**



a>0: blows up **UNSTABLE**

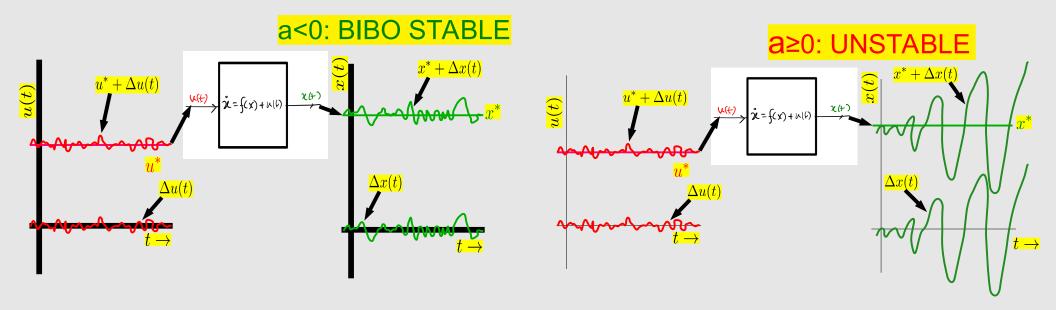


a=0: stays the same **MARGINALLY STABLE**



Stability: Scalar Case (contd.)

- Solution: $\Delta x(t) = \Delta x(0)e^{at} + \int_0^t e^{a(t-\tau)} b\Delta u(\tau) d\tau \frac{e^{at} * (b\Delta u(t))}{t}$
- Can show (see handwritten notes): input term (convolution)
 - if a<0: $e^{at} * (b\Delta u(t))$ bounded if $\Delta u(t)$ bounded: **BIBO** stable
 - if a>0: $e^{at}*(b\Delta u(t))$ unbounded even if $\Delta u(t)$ bounded: **UNSTABLE**
 - if a=0: $e^{at}*(b\Delta u(t))$ unbounded even if $\Delta u(t)$ bounded: **UNSTABLE**

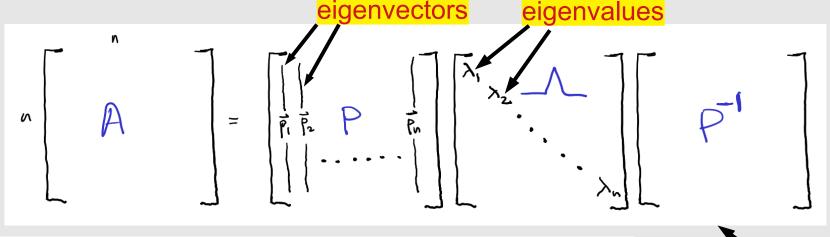


The Vector Case: Eigendecomposition

- The vector case: $\frac{d}{dt}\Delta\vec{x}(t) = A\Delta\vec{x}(t) + B\Delta\vec{u}(t)$
 - → [already linear(ized); everything is real] real matrices
- Can be "decomposed" into n scalar systems
 - the key idea: to eigendecompose A

if time, move to xourna

(recap) eigendecomposition: given an nxn matrix A:*



$$\begin{bmatrix}
A \\
\vec{p}_{i} \vec{p}_{i} & P \\
\vec{p}_{i} \vec{p}_{i}
\end{bmatrix} = \begin{bmatrix}
\vec{p}_{i} \vec{p}_{i} & P \\
\vec{p}_{i} \vec{p}_{i}
\end{bmatrix} \begin{bmatrix}
\lambda_{i} \\
\lambda_{2} \\
\lambda_{m}
\end{bmatrix}$$

$$A\vec{p}_{i} = \vec{p}_{i} =$$

EE* diagonalization always possible if all eigenvalues distinct (assumed)

Slide 17

Eigendecomposition (contd.)

- eigenvalues and determinants
 - $A\vec{p} = \lambda \vec{p} \Leftrightarrow (A \lambda I)\vec{p} = \vec{0}$

must be singular in order to support a non-zero solution for \vec{p}

• i.e., $det(A - \lambda I) = 0$

•
$$p_A(\lambda) \triangleq \det(A - \lambda I) = \lambda^n + c_n \lambda^{n-1} + \dots + c_2 \lambda + c_1$$

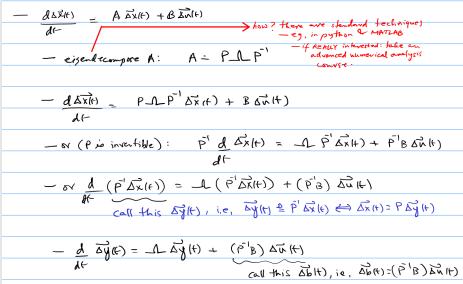
characteristic polynomial of A

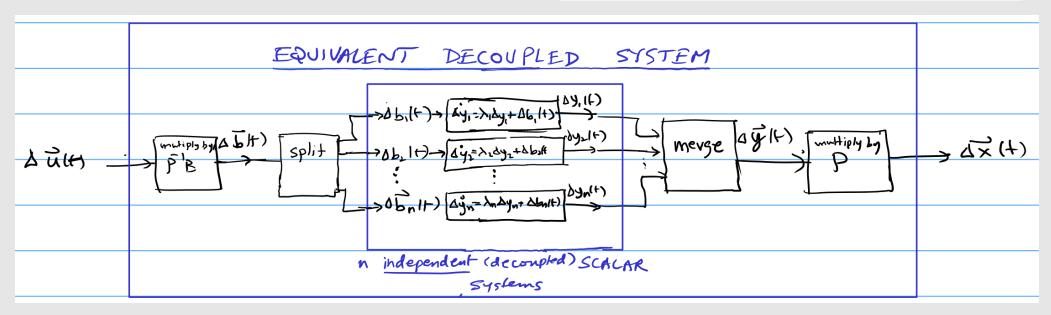
- the roots of the char. poly. are the eigenvalues
 - factorized form: $p_A(\lambda) = (\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n) = 0$
 - in general, n roots \rightarrow n eigenvalues $\{\lambda_1, \lambda_2, ..., \lambda_n\}$

The Vector Case: Diagonalization

Applying eigendecomposition: diagonalization

→ (move to xournal)





Stability: the Vector Case

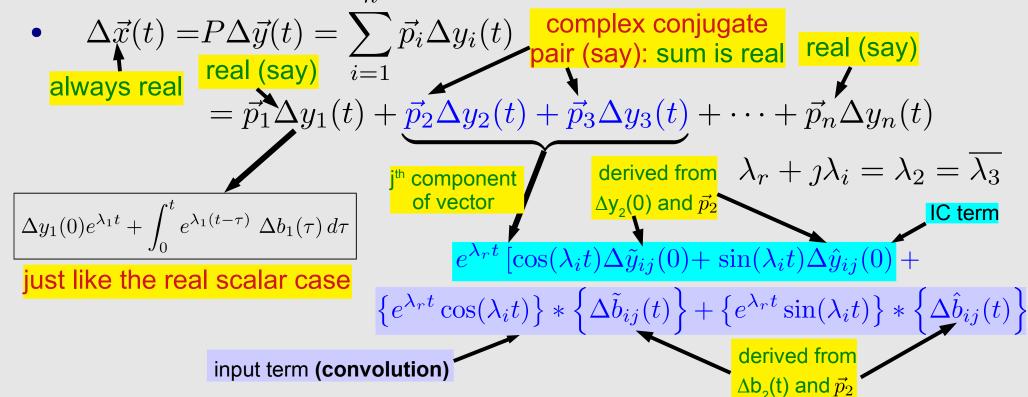
- $\frac{d}{dt} \Delta y_i(t) = \lambda_i \Delta y_i(t) + \Delta b_i(t)$ $\frac{i = 1, \dots, n}{i}$ provided λ_i is REAL $\lambda_i < 0$
- System stable if each system is stable
- Complication: eigenvalues can be complex
 - reason: real matrices A can have complex eigen{vals,vecs}
 - examples: (also demo in MATLAB)

Stability: the Vector Case (contd.)

- If A real, eigen(v,v)s come in complex conjugate pairs
 - $A\vec{p}_i = \lambda_i \vec{p}_i \Rightarrow \overline{A} \, \overline{\vec{p}_i} = \overline{\lambda_i} \, \overline{\vec{p}_i} \Rightarrow A \, \overline{\vec{p}_i} = \overline{\lambda_i} \, \overline{\vec{p}_i}$
- Implications (details in handwritten notes)

EE16B, Spring 2018, Lectures on Linearization and Stability (Roychowdhury)

- internal quantities in the decomposition come in conjugate pairs
 - the rows of P⁻¹, $\Delta b_i(t)$, the eigenvalues λ_i , $\Delta y_i(t)$, the cols of P $\vec{p_i}$



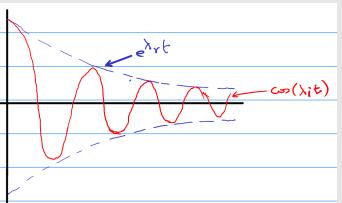
Slide 21

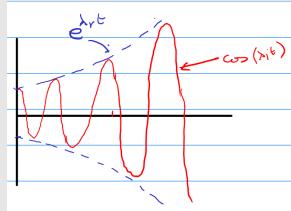
Stability: the Vector Case (contd. - 2)

• Initial condition terms: $e^{\lambda_r t} \left[\cos(\lambda_i t) \Delta \tilde{y}_{ij}(0) + \sin(\lambda_i t) \Delta \hat{y}_{ij}(0) \right]$

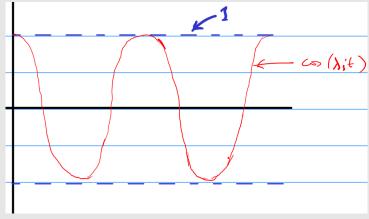
 $\lambda_r < 0$: envelope dies down $\lambda_r > 0$: envelope blows up $\lambda_r = 0$: const. envelope

STABLE





MARGINALLY STABLE

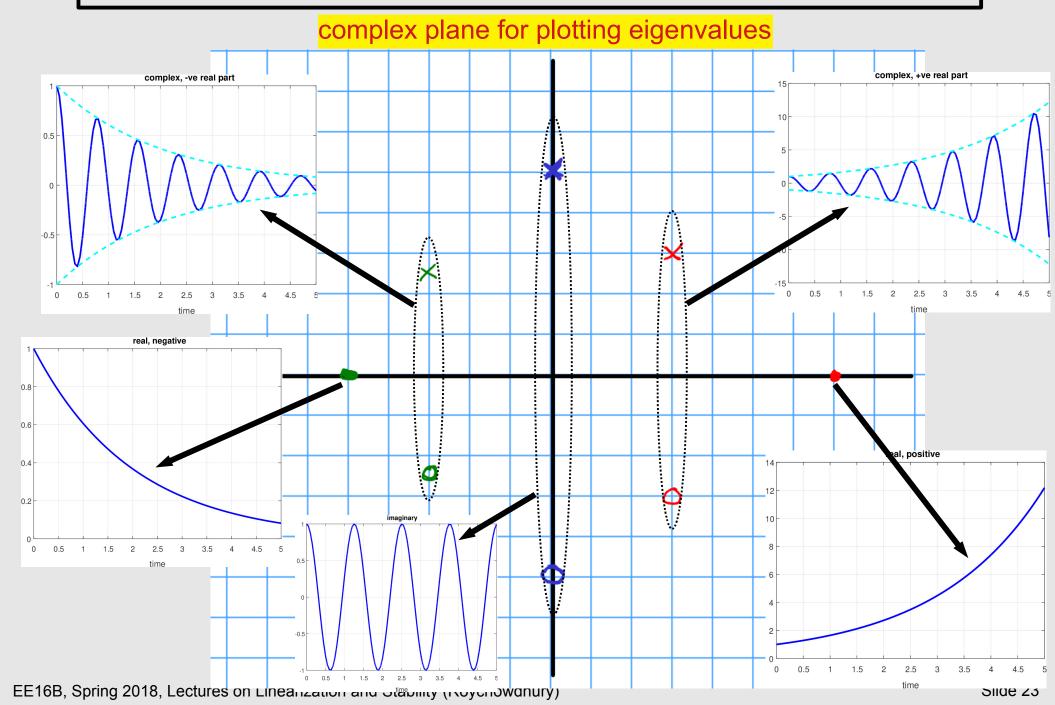


- Input conv. terms: $\{e^{\lambda_r t}\cos(\lambda_i t)\} * \{\Delta \tilde{b}_{ij}(t)\} + \{e^{\lambda_r t}\sin(\lambda_i t)\} * \{\Delta \hat{b}_{ij}(t)\}$
 - can show (see notes) that:

same as for real eigenvalues, but using the real parts of complex eigenvalues

- \rightarrow if λ_r <0: bounded if $\Delta u(t)$ bounded: BIBO stable
- \rightarrow if $\lambda_r > 0$: unbounded even if $\Delta u(t)$ bounded: UNSTABLE
- → if λ_r =0: unbounded even if $\Delta u(t)$ bounded: UNSTABLE

Eigenvalues and Responses (continuous)



Eigenvalues of Linearized Pendulum

(move to xournal)

$$\frac{d\vec{x}}{dt} = \begin{bmatrix} 0 & 1 \\ -9/2 & -k/m \end{bmatrix} \vec{x} + \begin{bmatrix} 0 \\ +\frac{u(t)}{mt} \end{bmatrix}$$

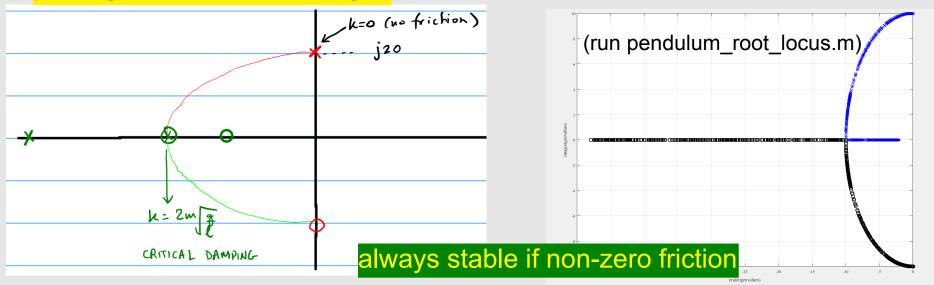
$$\lambda_{1/2} = \frac{-k}{2m} + \frac{1}{2} \sqrt{\frac{k^2}{m^2} - \frac{4g}{2}}$$

$$A\vec{p} = \lambda\vec{p} \implies (A - \lambda I)\vec{p} = 0 \implies \begin{bmatrix} -\lambda & 1 \\ -3/4 & \frac{-k}{m} - \lambda \end{bmatrix} \vec{p} = 0$$

$$def = k \text{ could} = 0$$

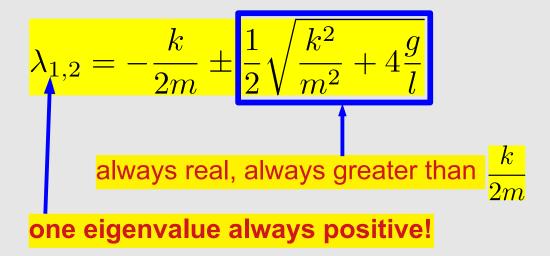
$$\lambda (\lambda + k/m) + \frac{q}{k} = 0 \implies \lambda^2 + \frac{k}{m} \lambda + \frac{q}{k} = 0 \implies \lambda_{1/2} = \frac{-k}{2m} + \frac{1}{2} \sqrt{\frac{k^2}{m^2} - \frac{k}{2}}$$

plot eigenvalues as k changes

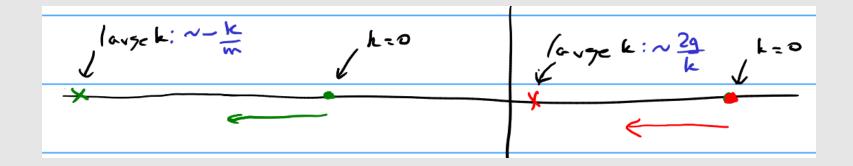


Eigenvalues of Inverted Pendulum

$$A = J_x = \begin{bmatrix} 0 & 1 \\ +\frac{g}{l} & -\frac{k}{m} \end{bmatrix}$$



always unstable!



Stability for Discrete Time Systems

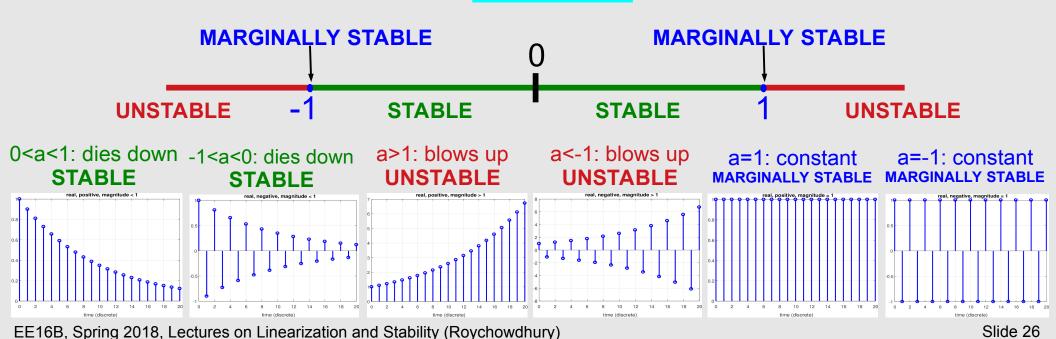
- The scalar case: $\Delta x[t+1] = a\Delta x[t] + b\Delta u[t]$, IC $\Delta x[0]$
 - → [already linear(ized); everything is real]
 - → (move to xournal?)

$$\Delta x[t] = \frac{a^t \Delta x[0]}{10} + \sum_{i=1}^t a^{t-i} b \Delta u[i-1]$$

 $f = 0: \quad \Delta x[1] = \alpha \Delta x[0] + b \Delta u[0]$ $f = 1: \quad \Delta x[2] = \alpha \Delta x[1] + b \Delta u[0] = \alpha^2 \Delta x[0] + ab \Delta u[0] + b \Delta u[1]$ $f = 2: \quad \Delta x[3] = \alpha \Delta x[2] + b \Delta u[2] = \alpha^3 \Delta x[0] + \alpha^2 b \Delta u[0] + ab \Delta u[1] + b \Delta u[2]$ \vdots $\Delta x[0] = \alpha^4 \Delta x[0] + \alpha^{-1} b \Delta u[0] + \alpha^{-2} b \Delta u[1] + \cdots + ab \Delta u[0-2] + b \Delta u[0-1]$ $= \alpha^4 \Delta x[0] + \sum_{i=1}^{t} \alpha_i b \Delta u[i-1]$ $= \alpha^4 \Delta x[0] + \sum_{i=1}^{t} \alpha_i b \Delta u[i-1]$ $= \alpha^4 \Delta x[0] + \sum_{i=1}^{t} \alpha_i b \Delta u[i-1]$ $= \alpha^4 \Delta x[0] + \sum_{i=1}^{t} \alpha_i b \Delta u[i-1]$ $= \alpha^4 \Delta x[0] + \sum_{i=1}^{t} \alpha_i b \Delta u[i-1]$ $= \alpha^4 \Delta x[0] + \sum_{i=1}^{t} \alpha_i b \Delta u[i-1]$ $= \alpha^4 \Delta x[0] + \alpha^4 \Delta x[0$

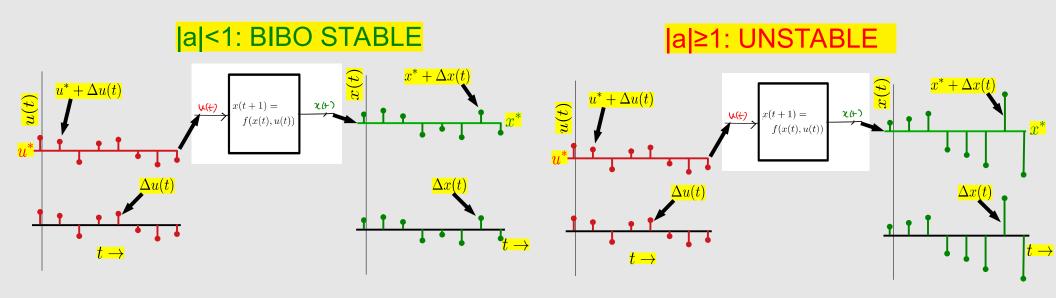
input term (discrete convolution)

• Initial Condition term: $a^t \Delta x[0]$



Scalar Discrete-Time Stability (contd.)

- Solution: $\Delta x[t] = a^t \Delta x[0] + \sum_{i=1}^t a^{t-i} b \Delta u[i-1]$
- Can show (see handwritten notes): \input term (d. convolution)
 - if |a|<1: bounded if ∆u(t) bounded: BIBO stable
 - if |a|>1: unbounded even if ∆u(t) bounded: UNSTABLE
 - if |a|=1: unbounded even if ∆u(t) bounded: UNSTABLE

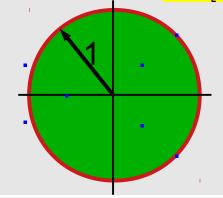


Discrete Time Stability: the Vector Case

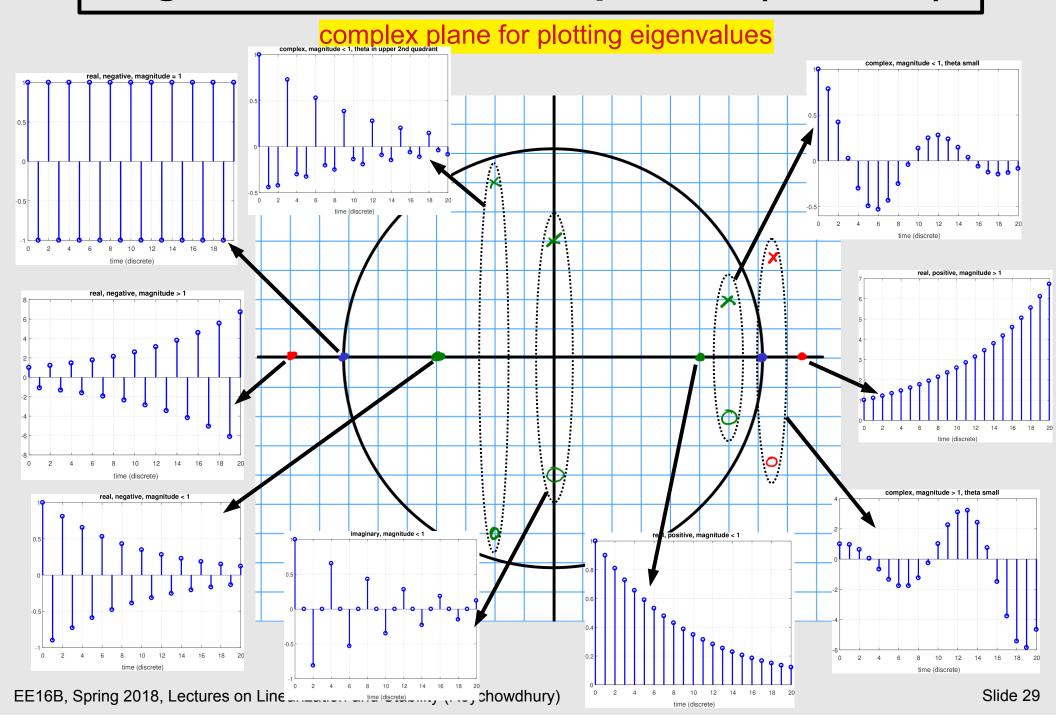
- The vector case: $\Delta \vec{x}[t+1] = A\Delta \vec{x}[t] + B\Delta \vec{u}[t]$
 - → [already linear(ized); everything is real] real matrices
- Eigendecompose A: $A = P\Lambda P^{-1}$
- Define: $\Delta \vec{y}[t] \triangleq P^{-1} \Delta \vec{x}[t] \iff \Delta \vec{x}[t] \triangleq P \Delta \vec{y}[t]$
 - $\Delta \vec{b}[t] \triangleq P^{-1} \Delta \vec{u}[t]$

scalar

- $i=1,\cdots,n$
- Decomposed system: $\Delta \vec{y_i}[t+1] = \lambda_i \Delta \vec{y}[t] + \Delta \vec{b_i}[t]$
 - same as scalar case, but λ_i now complex
 - same form for $\Delta \vec{x}[t]$ as for the continuous case
 - \rightarrow complex conjugate terms always present in pairs $\rightarrow \Delta \vec{x}[t]$ real
- Stability:
 - BIBO stable iff $|\lambda_i| < 1$, $i = 1, \dots, n$



Eigenvalues and IC Responses (discrete)



Summary

- Linearization
 - scalar and vector cases
 - example: pendulum, (pole-cart)
- Stability
 - scalar and vector cases
 - continuous: real parts of eigenvalues determine stability
 - pendulum: stable and unstable equilibria
 - eigenvalue vs friction plots (root-locus plots)
 - discrete: magnitudes of eigenvalues determine stability