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Lectures 4B & 5A: Overview Slides

Linearization and Stability
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Linearization

● Approximate a nonlinear system by a linear one
➔ (unless it’s linear to start with)

● then apply powerful linear analysis tools
➔ gain precise understanding → insight and intuition

● Consider a scalar system first
● in state space form with additive input (for simplicity)

● step 1: choose DC input u*
➔ find DC soln. x*

➔ x* is an equilibrium point
● aka DC operating point

● for input u*

: solve for x*
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Linearization (contd. - 2)
● DC operation (equilibrium), viewed in time

● Now, perturb the input a little:
● Suppose x(t) responds by also changing a little

●  
● Goal: find system relating Du(t) and Dx(t) directly

“small”

ASSUMED “small”

Linearized
System
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Linearization (contd. - 3)

● Basic notion: replace f(x) by its tangent line at x*
● Mathematically: expand f(x*+Dx) in Taylor Series

accurate for
small Dx

inaccurate for
larger Dxslope
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Linearization (contd. - 4)
● applying the Taylor linearization

● (move to xournal)

ORIGINAL 

LINEARIZED
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Linearization of Vector S.S. Systems

● Now: the full S.S.R: 

● step 1: find a DC. op. pt. (equilibrium pt.)
●  

● The linearized system is (see handwritten notes for derivation)

● What are     and     ?
● called Jacobian or gradient matrices

DC input

DC solution

Solving for this is often difficult,
even using computational methods

n-vector nxn matrix m-vector
nxm matrix
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Jacobian (Gradient) Matrices

● If:                                                                        , then

nxn matrix

nxm matrix
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Example: Linearizing the Pendulum

● Pendulum: 
● (move to xournal)

● Compare against sin(q)≈q approximation (prev. class)
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                                                                          This and future lectures

Where We Are Now

Any kind of system
(EE, mech., chem.,

optical, multi-domain,
...)

STATE SPACE
FORMULATION

continuous AND discrete systems

LINEAR

NONLINEAR

LINEARIZATION

stability

controllability
observability

FEEDBACK

practically
useful

engineered
systems
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Pendulum: Inverted Solution

● Pendulum: 

● DC input: b(t) = b*
● DC solution: dx/dt = 0 →           , 

 inverted position
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Inverted Pendulum: Linearization

●   

●  

● Linearization:

non-inverted
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Pole & Cart (Inverted Pendulum ++)
● Slightly more complicated example

● → discussion / HW
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Stability

● Basic idea: perturb system a little from equilibrium
● does it come back? yes → STABLE

● More precisely:
● small perturbations → small responses

 

“small”

remains “small”

BIBO STABLE
BIBO = bounded input bounded output
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Stability (contd. - 2)

 

“small”
becomes large

UNSTABLE
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Stability: the Scalar Case

● Analysis: start w scalar case:
➔ [already linear(ized); everything is real]

● Solution:
● [obtained by, eg, the method of integrating factors (Piazza: @88)]

● The initial condition term:            . Say 

real

 initial condition term
 input term (convolution)

a<0: dies down
STABLE

a>0: blows up
UNSTABLE

a=0: stays the same
MARGINALLY STABLE
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Stability: Scalar Case (contd.)

● Solution:

● Can show (see handwritten notes):

● if a<0:                     bounded if Du(t) bounded: BIBO stable
● if a>0:                     unbounded even if Du(t) bounded: UNSTABLE

● if a=0:                     unbounded even if Du(t) bounded: UNSTABLE

 input term (convolution)

  

a<0: BIBO STABLE a≥0: UNSTABLE
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The Vector Case: Eigendecomposition

● The vector case:
➔ [already linear(ized); everything is real]

● Can be “decomposed” into n scalar systems
● the key idea: to eigendecompose A

● (recap) eigendecomposition: given an nxn matrix A:*

real matrices

eigenvectors eigenvalues

 same thing

* diagonalization always possible if all eigenvalues distinct (assumed)

 if time, move to xournal
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Eigendecomposition (contd.)

● eigenvalues and determinants
●   

● i.e., 

●   

● the roots of the char. poly. are the eigenvalues
● factorized form:
● in general, n roots → n eigenvalues {l

1
, l

2
, …, l

n
} 

 must be singular in order to support a non-zero solution for 

characteristic polynomial of A
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The Vector Case: Diagonalization
● Applying eigendecomposition: diagonalization

➔ (move to xournal)
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Stability: the Vector Case

●  

● System stable if each system is stable
● Complication: eigenvalues can be complex

● reason: real matrices A can have complex eigen{vals,vecs}
● examples: (also demo in MATLAB)

➔  

➔   

provided li is REAL
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Stability: the Vector Case (contd.)
● If A real, eigen{v,v}s come in complex conjugate pairs

●   
● Implications (details in handwritten notes)

● internal quantities in the decomposition come in conjugate pairs
➔ the rows of P-1, Db

i
(t), the eigenvalues     , Dy

i
(t), the cols of P

●  complex conjugate
pair (say): sum is real  real (say)

 real (say)
always real

just like the real scalar case

 derived from

Dy
2
(0) and   

 derived from
Db

2
(t) and   

jth component
of vector  IC term

 input term (convolution)
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Stability: the Vector Case (contd. - 2)

● Initial condition terms:

● Input conv. terms:
● can show (see notes) that:

➔ if l
r
<0: bounded if Du(t) bounded: BIBO stable

➔ if l
r
>0: unbounded even if Du(t) bounded: UNSTABLE

➔ if l
r
=0: unbounded even if Du(t) bounded: UNSTABLE

l
r
<0: envelope dies down

STABLE

l
r
>0: envelope blows up

UNSTABLE
l

r
=0: const. envelope

MARGINALLY STABLE

same as for real eigenvalues, but
using the real parts of complex eigenvalues
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Eigenvalues and Responses (continuous)
complex plane for plotting eigenvalues
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Eigenvalues of Linearized Pendulum

● (move to xournal)

plot eigenvalues as k changesplot eigenvalues as k changes

(run pendulum_root_locus.m)

always stable if non-zero friction
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Eigenvalues of Inverted Pendulum

●  

always unstable!

always real, always greater than 

one eigenvalue always positive!
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Stability for Discrete Time Systems

● The scalar case:                                  , IC Dx[0]
➔ [already linear(ized); everything is real]
➔ (move to xournal?)

●  

● Initial Condition term:

real

IC term  input term (discrete convolution)

0<a<1: dies down
STABLE

-1<a<0: dies down
STABLE

a>1: blows up
UNSTABLE

a<-1: blows up
UNSTABLE

a=1: constant
MARGINALLY STABLE

a=-1: constant
MARGINALLY STABLE

0

-1 1STABLE STABLEUNSTABLE UNSTABLE

MARGINALLY STABLE MARGINALLY STABLE
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Scalar Discrete-Time Stability (contd.)

● Solution:

● Can show (see handwritten notes):

● if |a|<1: bounded if Du(t) bounded: BIBO stable
● if |a|>1: unbounded even if Du(t) bounded: UNSTABLE

● if |a|=1: unbounded even if Du(t) bounded: UNSTABLE

 input term (d. convolution)

|a|<1: BIBO STABLE |a|≥1: UNSTABLE
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Discrete Time Stability: the Vector Case

● The vector case:
➔ [already linear(ized); everything is real]

● Eigendecompose A: 
● Define:

●  
● Decomposed system:

● same as scalar case, but l
i
 now complex 

● same form for           as for the continuous case
➔ complex conjugate terms always present in pairs →           real

● Stability:
● BIBO stable iff             ,  

real matrices

scalar

1 .

.
.

.

.

.

.
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Eigenvalues and IC Responses (discrete)
complex plane for plotting eigenvalues
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Summary

● Linearization
● scalar and vector cases

➔ example: pendulum, (pole-cart)
● Stability

● scalar and vector cases
➔ continuous: real parts of eigenvalues determine stability

● pendulum: stable and unstable equilibria
● eigenvalue vs friction plots (root-locus plots)

➔ discrete: magnitudes of eigenvalues determine stability


