EE16B, Spring 2018 **UC Berkeley EECS** Maharbiz and Roychowdhury Lectures 5B & 6A: Overview Slides **Controllability and Feedback**

Controllability

- nxn matrix • Given (linearized) S.S.R: $\Delta \vec{x}[t+1] = A \Delta \vec{x}[t] + B \Delta \vec{u}[t]$
 - can you drive $\Delta \vec{x}[t]$ to any value you want (using $\Delta \vec{u}[t]$)?
 - → ie, can you **control** $\Delta \vec{x}[t]$ completely?
 - (move to xournal)
 - say $\Delta \vec{x}[0] = 0$ (w.l.o.g, see notes)

?	Dx[4]	Ξ	A Ax[e]	+ B DU[F]	,	wifh	DX(0) IC	

nxm matrix

$$\Delta \tilde{x}[t] = A^{t} \delta \tilde{x}[0] + \sum_{i=1}^{t} A^{t-i} B \Delta \tilde{u}[i-1]$$

rank: number of lin. indep. columns (= # of lin. indep. rows)

Controllability: simple example

• span(
$$\begin{bmatrix} A^{t-1}B \mid A^{t-2}B \mid \cdots \mid AB \mid B \end{bmatrix}$$
) = span($\begin{bmatrix} B \mid AB \mid \cdots \mid A^{t-1}B \end{bmatrix}$)
• $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, $B = \vec{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} B \mid AB \mid A^2B \mid \cdots \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots \\ 0 & 0 & 0 & \cdots \end{bmatrix}$
not controllable
• The system: $\begin{bmatrix} \Delta x_1[t+1] \\ \Delta x_2[t+1] \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \Delta x_1[t] \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$
 $\Delta u(t)$ has no influence on Δx_{2t}

- When does A, AB, ... run out of lin. indep vectors?
 every A has a minimal polynomial (result from lin. alg.)
 - → ie, for some k≤n, $A^k + c_{k-1}A^{k-1} + c_{k-2}A^{k-2} + \dots + c_1A + c_0I = 0$

→ ie,
$$A^k B = -c_{k-1}A^{k-1}B - c_{k-2}A^{k-2}B - \dots - c_1AB - c_0B$$

linear comb. of [B, AB, A²B, ..., A^{k-1}B]

→ ie, A^k, A^{k+1}, … will not contribute new linearly indep. columns

Example: Accelerating Car

- control input: acceleration
 - can change only every T secs
 - stays constant in between
- Q: can we set its position AND velocity to whatever we want (at time = multiples of T)?
- analysis approach
 - find a discrete SSR for position/vel.
 - analyse its controllability
 - acceleration: a; velocity: v; position: x

•
$$v(\tau) = \int_0^\tau a(\tau_2) d\tau_2$$
, $x(\tau) = \int_0^\tau v(\tau_2) d\tau_2$

•
$$v(\tau) - v(tT) = \int_{tT}^{\tau} a(\tau_2) d\tau_2 = a(tT) \int_{tT}^{\tau} d\tau_2 = (\tau - tT) a(tT) \frac{tT \le \tau \le (t+1)T}{tT \le \tau \le (t+1)T}$$

Accelerating car (contd.)

acceleration: a; velocity: v; position: x

•
$$v(\tau) = \int_{0}^{\tau} a(\tau_{2}) d\tau_{2}, \quad x(\tau) = \int_{0}^{\tau} v(\tau_{2}) d\tau_{2}$$

• $v(\tau) - v(tT) = \int_{tT}^{\tau} a(\tau_{2}) d\tau_{2} = a(tT) \int_{tT}^{\tau} d\tau_{2} = (\tau - tT) a(tT) \frac{tT \le \tau \le (t+1)T}{tT \le \tau \le (t+1)T}$
• $x(\tau) - x(tT) = \int_{0}^{\tau} v(\tau_{2}) d\tau_{2} = \int_{0}^{\tau} [v(tT) + a(tT)(\tau_{2} - tT)] d\tau_{2}$

$$\int -x(tT) = \int_{tT} v(\tau_2) d\tau_2 = \int_{tT} \left[v(tT) + a(tT)(\tau_2 - tT) \right] d\tau_2$$
$$= (\tau - tT)v(tT) + a(tT)\frac{(\tau - tT)^2}{2} \quad tT \le \tau \le (t+1)T$$

• set $\tau = (t+1)T$; the above become: • $x((t+1)T) = x(tT) + Tv(tT) + \frac{T^2a(tT)}{2}$ • v((t+1)T) = v(tT) + Ta(tT)

Linearization of Vector S.S. Systems

•
$$x((t+1)T) = x(tT) + Tv(tT) + \frac{T^2a(tT)}{2}$$

 $v((t+1)T) = v(tT) + Ta(tT)$

• S.S.R in matrix-vector form:

•
$$\begin{bmatrix} x((t+1)T) \\ v((t+1)T) \end{bmatrix} = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x(tT) \\ v(tT) \end{bmatrix} + \begin{bmatrix} \frac{T^2}{2} \\ T \end{bmatrix} a(t)$$

• Controllability: $\begin{bmatrix} B \mid AB \end{bmatrix} = \begin{bmatrix} \frac{T^2}{2} & 3\frac{T^2}{2} \\ T & T \end{bmatrix}$

•
$$det\left(\begin{bmatrix} \frac{T^2}{2} & 3\frac{T^2}{2}\\ T & T \end{bmatrix}\right) = \frac{T^3}{2} - 3\frac{T^3}{2} = -T^3$$
 always nonzero (for T≠0)

 A: YES, we can drive the car's position AND velocity to whatever values we want (at every τ=tT for t≥2)

Continuous Time Controllability

- System: $\frac{d}{dt}\Delta \vec{x}(t) = A\Delta \vec{x}(t) + B\Delta \vec{u}(t)$
- Controllability: same condition as for discrete
 - $rank\left(\left[B \mid AB \mid \cdots \mid A^{t-1}B\right]\right) = n$

• Example: RL circuit

•
$$i_1 + i_2 + \frac{v}{R} = I_1(t), \ \frac{di_1}{dt} = \frac{v}{L_1}, \ \frac{di_2}{dt} = \frac{v}{L_2}$$

• $\frac{di_1}{dt} = \frac{R(I_1(t) - i_1(t) - i_2(t))}{L_1}, \ \frac{di_2}{dt} = \frac{R(I_1(t) - i_1(t) - i_2(t))}{L_2}$
• $\frac{d}{dt} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} = \begin{bmatrix} -\frac{R}{L_1} & -\frac{R}{L_1} \\ -\frac{R}{L_2} & -\frac{R}{L_2} \end{bmatrix} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} + \begin{bmatrix} \frac{R}{L_1} \\ \frac{R}{L_2} \end{bmatrix} I(t)$

Continuous Controllability (contd.)

- Intuitive/"physical" way to see it:
 - i₁ and i₂ both **directly determined** by the same v(t)

•
$$\frac{di_1}{dt} = \frac{v}{L_1}$$
, $\frac{di_2}{dt} = \frac{v}{L_2}$
• $\frac{d}{dt}(L_1i_1(t) - L_2i_2(t)) = 0 \rightarrow L_1i_1(t) - L_2i_2(t) = \text{constant}$

Feedback

- The concept of feedback
 - add/subtract some of the output/state from the input

• Uses

- making systems **less sensitive** to undesired noise and uncertainties (ALWAYS PRESENT in practical systems)
- stabilizing unstable systems (if they are controllable)
 - thus making them practically usable

The Problem with Open Loop Control

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$ unstable
 - but controllable (why?) * dropping Δ from Δx and Δx (for convenience)
 - goal: make x(t=10) = 1, starting with I.C. x(0) = 1

•
$$x(10) = 1 \cdot e^{10} + \int_0^{10} e^{10-\tau} u(\tau) d\tau = 1 \cdot e^{10} + u(e^{10} - 1)$$

- want: $1 = x(10) = 1 \cdot e^{10} + u(e^{10} 1)$
- suppose there's a 0.1% error in the IC: 1 \rightarrow 1.001
- new $x(10) = 1.001 \cdot e^{10} + u(e^{10} 1) = 1 + 10^{-3}e^{10} 22$
- 0.1% error in IC \rightarrow 2200% error in x(10) $e^{10} \simeq 22026$
- How will this change if a = -1?

if system unstable, control in the presence of errors/noise is impossible in practice EE16B, Spring 2018, Lectures on Controllability and Feedback (Roychowdhury) Slide 10

Stabilization via Feedback

• apply feedback: $u(t) \mapsto u(t) - \beta x(t)$

•
$$\dot{x}(t) = ax(t) + u(t) \mapsto \dot{x}(t) = ax(t) + u(t) - \beta x(t), \quad a = 1 > 0$$

•
$$\dot{x}(t) = (a - \beta)x(t) + u(t), \quad a = 1 > 0$$

choose $\beta > a \rightarrow$ system is stabilized

Feedback for Vector S.S. Systems

- stability governed by eigenvalues of $A \vec{b}\vec{k}^T$
- Q: how do the e.values of A change due to
 - very difficult to figure out analytically!
 - * can do simple examples; otherwise, numerically

Feedback for Discrete-Time S.S.Rs

- system w feedback: $\vec{x}[t+1] = (A B\vec{K}^T)\vec{x}[t] + B\vec{u}[t]$
 - stability still governed by the eigenvalues of $A BK^T$
- stability (discr.) → magnitude of eigenvalues < 1
 - different from the continuous case

Example: Discrete-Time Feedback

- char. poly.: $\lambda^2 (a_2 k_2)\lambda (a_1 k_1) = 0$
 - roots: $\lambda_{1,2} = \frac{a_2 k_2}{2} \pm \frac{1}{2}\sqrt{(a_2 k_2)^2 + 4(a_1 k_1)}$
- easy to express k_1 , k_2 in terms of λ_1 , λ_2 :
 - $k_1 = \lambda_1 \lambda_2 a_1$ $k_2 = a_2 - \lambda_1 - \lambda_2$ \leftarrow choose any λ_1 and λ_2 (eg, stable ones); set k_1 and k_2
 - **if** λ_1 is complex: **make sure** λ_2 is the conjugate of λ_1 !
 - → otherwise, $k_1/k_2/x_1/x_2$ will have imaginary components
 - which would be physically meaningless

Another D-T. Feedback Example

• char. poly.:
$$(1 - k_1 - \lambda)(2 - \lambda) = 0$$

- roots: $\lambda_1 = 1 k_1$, $\lambda_2 = 2$ does not depend on k_1 or k_2 ; ie, cannot be altered via feedback
- suspicions (based on a few examples)
 - controllable \rightarrow can place all eigenvalues via careful feedback
 - not controllable \rightarrow might not be able to place all evs