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Controllability

● Given (linearized) S.S.R: 
● can you drive         to any value you want (using         )?

➔ ie, can you control          completely?
● (move to xournal)
● say                   (w.l.o.g, see notes)

● would like to make          anything I like  in 

● rank: number of lin. indep. columns (= # of lin. indep. rows)

must be full rank (ie, rank = n)

nxn matrix nxm matrix
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Controllability: simple example
●  

●    

● The system:

● When does A, AB, … run out of lin. indep vectors?
● every A has a minimal polynomial (result from lin. alg.)

➔ ie, for some k≤n,
➔ ie,  

➔ ie, Ak, Ak+1, … will not contribute new linearly indep. columns         
        

rank = 1 < n=2not controllable

Du(t) has no influence on Dx
2[
t]

 linear comb. of [B, AB, A2B, …, Ak-1B]
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Example: Accelerating Car
● control input: acceleration

● can change only every T secs
➔ stays constant in between

● Q: can we set its position AND 
velocity to whatever we want (at 
time = multiples of T)?

● analysis approach
● find a discrete SSR for position/vel.
● analyse its controllability

0 T 2T 3T 4T

a
cc

e
l

● acceleration: a; velocity: v; position: x

●                           ,

●  

t=0 t=1 t=2 t=3 t=4

velocity
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Accelerating car (contd.)
● acceleration: a; velocity: v; position: x

●                           ,

●   

●   

● set                  ; the above become: 

●  
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Linearization of Vector S.S. Systems

●  

● S.S.R in matrix-vector form:

●   

●  Controllability:

●   

● A: YES, we can drive the car’s position AND velocity 
to whatever values we want (at every t=tT for t≥2)

always nonzero (for T≠0)
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Continuous Time Controllability

● System:

● Controllability: same condition as for discrete
●   

● Example: RL circuit

●                           ,              ,

●                                        ,

●             

nxn matrix nxm matrix
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Continuous Controllability (contd.)

●

● Controllability:

●  

● Intuitive/“physical” way to see it:
● i

1
 and i

2
 both directly determined by the same v(t)

●              ,

●                                     → 

rank = 1 < n=2

not controllable

cannot be set independently
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Feedback
● The concept of feedback

● add/subtract some of the output/state from the input

● Uses
● making systems less sensitive to undesired noise 

and uncertainties (ALWAYS PRESENT in practical systems)

● stabilizing unstable systems (if they are controllable)
➔ thus making them practically usable

System+
-

input output

b
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The Problem with Open Loop Control
● “open loop” means: no feedback

● “closed loop” means a system with feedback
● example:*

● but controllable (why?)
● goal: make x(t=10) = 1, starting with I.C. x(0) = 1

●  

● want:
● suppose there’s a 0.1% error in the IC: 1 → 1.001
● new
● 0.1% error in IC → 2200% error in x(10)

● How will this change if a = -1?  

try u(t) = constant

-1

~ 22

if system unstable, control in the presence of errors/noise is impossible in practice

unstable

* dropping D from Dx and Dx (for convenience)
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● apply feedback: 

●   

●  
choose b>a → system is stabilized

dx/dt = a x(t) + u(t)+
-

u(t) x(t)

b

Stabilization via Feedback
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● system w feedback: 
● stability governed by eigenvalues of 

● Q: how do the e.values of A change due to
● very difficult to figure out analytically!

➔ can do simple examples; otherwise, numerically

rank 1 matrix

+
-

u(t)

assumption for simplicity:
the input is still scalar

Feedback for Vector S.S. Systems
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Example: stabilizing an inverted 
pendulum using feedback

● i.p.:

● Closed loop system (ie, with feedback)

●   

Linearized
inverted pendulum+

-

u(t)

+
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Stabilizing I.P. via feedback (contd.)

● I.P. w F.:

● eigenvalues of this determine stability
➔  

➔  
●  to stabilize: make both evs -ve (real part)

➔ choose any

make this negative make this smaller than |kl+a
2
|

make this negative

run MATLAB demo
inverted_pendulum_w_feedback_root_locus.m



EE16B, Spring 2018, Lectures on Controllability and Feedback  (Roychowdhury) Slide 15

● system w feedback: 
● stability still governed by the eigenvalues of 

● stability (discr.) → magnitude of eigenvalues < 1
● different from the continuous case 

+
-

Feedback for Discrete-Time S.S.Rs
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Example: Discrete-Time Feedback

●  

● char. poly.:

● roots:

● easy to express k
1
, k

2
 in terms of l

1
, l

2
:

●     

● if l
1
 is complex: make sure l

2
 is the conjugate of l

1
!

➔ otherwise, k
1
/k

2
/x

1
/x

2
 will have imaginary components

● which would be physically meaningless

w feedback

choose any l
1
 and l

2
 (eg, stable ones); set k

1
 and k

2

+-

+
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Another D-T. Feedback Example

●  

● char. poly.:

● roots:

● suspicions (based on a few examples)
● controllable → can place all eigenvalues via careful feedback
● not controllable → might not be able to place all evs

w feedback

does not depend on k
1
 or k

2
; ie,

cannot be altered via feedback

not controllable


