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| Controller Canonical Form (CCF) |

* Recall prior example: #(t+1) = [

e char. poly.: A* — ax\ — ay: nice simp

0
ai

i

an

e form

ula

* Generalization: Controller Canonical Form (CCF)

0 1 0 0 0 ] 0
0O O 1 0 0 0
[ A — g:
0O O 0 1 0
a1 az a3 An—1 Qn | N
e char poly: A" —a, \"" ' —a, (A% — - —as )\ — ay

> not difficult to show this (though a bit tedious)
« apply determinant formula using minors to the last row
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Feedback on CCF

e System: %f(t) = AZ(t) + bu(t), with (A,b) in CCF

e apply feedback &: A — A — bkT

0 1 0 0 0 0
0 0 1 0 0 0

> AT =| ° R | b=
| al _kl af2_k2 a3_k3 T Qp—1 _kn—l an_kn_ _1_

* char pOIy: A" — (an_kn))\n_l o (an—l_kn—l))\n_2
— o — (ag—kg))\ — (al—kl)
> its roots are the eigenvalues that determine stability
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| Assigning Desired Roots |

e Suppose you want A, A, ..., A_to be the roots

e the char. poly. should equal: (A — A1)(A — A2) - - (A = A\p)

> (why?) e n

e Expand out (AW— ADA=A2) (A=) = [ [(A = N)

~_ . 1=1
+ TT0 =30 = = (WA
=1 -+ [)\1()\2+)\3—|—"°+)\n) + A2(Az+Ag+- -+ An)

_|_..._|_)\n_1>\n})\n—2 \
‘|‘—|—(—1)n)\1)\2)\n Y1
* equate coefficients against X" — (a,—kn)A" " = (an—1—kn-1)A"

Tn—1

_ s _ .
an_kn—_’)/n kn—’)/n An —"'—(ag—k2>)\—(a1—]€1)
_ — _ k. 1 =, 1 — Q. 1 *—these feedback coeffs
an-1 kn_ E In—1 =1 -1 L will place the eigenvalues
> 4 = < at the desired locations
if a system is in
a1 — k1 = —m . k=7 — a1 CCF, feedback can move its

eigenvalues to any desired locations
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CCF and Eigenvalue Placement: Examples

o A=

_ O O
o O =
w = O

b= |0

— A — bk" =

* char. poly.: \* — (3—k3)A? — (2—ko)A — (1 — k1)

e desired char. poly.: (A —X1)(A — A2)(A — A3)
> saywewant: Ay =X =X3=0 = (A= A)A—Xa)(A—A3) = \°

e then ks =3,k =2k =1

> or, ifwewant: \; = -1,y = -2, )\5 = —3

e A=A =) XA = A3) = A3 +6X2 + 11\ +6

—(3—k3)=6

(k3 =9

« —(2—ko)=11= < ky =13

—(1— k) =6

k=7
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| Converting Systems to CCF |

 But CCF seems a very special/restrictive form ...
* ... key question: what systems are in CCF?
* A: any controllable system can be converted to CCF!

* Here's how you do it:
1. Given any state-space system: %f(t) — AZ(t) + bu(t)
2. Form its controllability matrix: r,, 2 {5, Ab, A%, - - ,A”—lg}

3. Compute its inverse: R;l \full rank if system controllable;
and square, hence invertible

4. Grab the last row of R *': call it 47

*R,' = E . (¢ is acol. vector; ¢' is a row vector)

—— ] —
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| Converting Systems to CCF (contd.) |

T will be full rank, hence | +——— ¢" ——
-singular and invertible T
non-singu 5 qT A ;

5. Form the basis transformation matrix 7 2 |«+— ¢ A* ——
6. Define z(t) = TZ(t) & Z(t) = T 2(¢) '

7. Write the system in terms of z(¢): -
d equivalent to the

—Z(t) = TAT ' Z(t)+ Tb u(t) _—~original system:

— Al —

dt

. v u(t) — ()
A b is the same
f(t) — TlEN
similarity

A

8. (A,b) will be in CCF! transformation
 Proof: see the handwritten notes
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Controllable Systems can be Stabilized

e So far, we have shown that:
* CCF systems can be stabilized by feedback
* Controllable systems can be put in CCF
* — Controllable systs. can be stabilized by feedback

* but not necessary to first convert to CCF to stabilize
> just write out the char. poly. of A — bk” directly

- will be a linear expression ink , k,, ..., k

n

> match coeffs. of A* against those of (A — X)) = Xa) - (A= \n)

 will obtain a linear system of equations in k: Mk = 7

> solve Mk =17 for k (usually numerically) jetominsd by tt]e e

of A,b,and by A, ..., A

EE16B, Spring 2018, Lectures on CCF and Observability (Roychowdhury) Slide 8



| Example: co-operative car control |

/1 \ 94D: p.- b, /1 \
e car2 e N ... PN
@ desired gap: 9 - -
position: p, velocity: v, accel: a, position: p, velocity: v, accel: a,
dp2 dp1
— =7 t i = - - — =7 t
dt 2( ) define x.(t) = p,(t)-p,(t)-d di 1( )
dva X,(t) + 0 dvy
—— = as(t . — = a1t
i - d(p1 = p2)
th IC = [0, 0]"and _ _ '
\l,Jv(It) = ¢, the carzn At — U1 (t) U2 (t) <—call this x,(t)
will hit each other in d(?)l . 02)
20 — a1(t) — ao(t call this u(t), the input
a1 = z5(t) N A Z(t) b(t)
dt AN TN —BIBOUNSTABLE
d d 1| 0 1 1 (t) 0
T2 — = + u(t)
dt — U(t) dt |To 0 O |9 (t) 1
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| Co-op. Car Control (contd.) |

* introduce state feedback: A~ [_?ﬁ _1;32]

° eigenvalueS' /

position feedback velocity feedback

- Alg_——i \/k2 e

both sensed by Doppler radar

e stabilization
e ko >0, k1> 0 ensures eigenvalues have -ve real parts

* small errors in the acceleration u(t) — only
small changes to the desired distance 0

e see handwritten notes for details
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| Observability [Back to Discrete] |

* suppose we have just a SCALAR output |t
* |.e., don’t have access to all of Z[t] for feedback
e can we recover 7[t] just from observations of y[t[?

y[t] = ¢ Z[t]+dult]

- yt]
Zt+1] = AZ[t]+bult] T (+)
d

* More precisely:
* suppose we know: A, b, ¢' and ult] f yes: the system is

> and can measure Yy(t) called OBSERVABLE
* can we recover x|t| ?

ult]
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| The Observability Matrix

we know (or can calculate) these

* \We know that Zz[t]

e Suppose ult]=0

l

= [AT[z][0]

/

_|_

the only unknown

t
Z A bufi — 1]
i=1

e then Z[t] = A" Z[0]. Write out y[t] = ¢’ Z[t]

observability matrix (nxn)
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must be full-rank/non-singular/invertible to recover
(UQ uniquely from measurements of y(t)

nowarnury)

olidae
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| Observability: An Example

(][ =

/

e Each application of A rotates
by 6
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| Observability: Example (contd.) |

N HS ] I e I 1 P v e - 1

xalt + 1] sin(f)  cos(0)
agn " —q_’
e Observability matrix: 0 2 [:5‘? A:] = [6081(9) —si?a(e)]

e Determinant of O: det(O) = — sin(6)
* non-zero if  # 0, m, 2w, --- ,im— observable

* 0if § = m — not observable I
> cannot recover X, uniquely

2=b|}
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| Observers |

* Can we make a system that recovers Z|t| from y[t]

in real time? B
* (we can use our knowledge of A, b, u[t] — and yJt])

e YES! (if the system is observable — as it will turn out)
* first.: make a clone of the system

* next: incorporate the difference between the outputs
of the actual system and the clone

------------------------------------------------------------------------------------------------------------------------------------------

:IllllIllllllllllllllllllllllIlllllllllllllllllllllllllllllllllllllIlllllllllllllllllllllllllllllllllllllllllllllllllllllllllllIlllllIllllF

estimate of ¢ [t]

Yy [t] n n 5113)[*?5]

ult]
called an OBSERVER
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Observers — Why/How They Work |
e Observer: Z[t+1]=AZ[t]+bult] tf(qsz[t] — y[t])

_J/

N

error feedback  error in predicted output
vector - TBD (scalar)

e Define a state prediction error: €[t] = :%:‘[t] —T|t]
* then we can derive (move to xournal):
> E[t+1]=(A+17")et]
» would like €[t] — 0 as tincreases (i.e., Z[t] — Z]t])
> choose / to make the eigenvalues of A + [ ¢’ stable!

* strong analogy w controllability (recall A — Z;ET)
sevsof A+ié =evsof AT +¢cl" > —é—b, 7 k"

—

* j.e., can always make A + [’ stable if (A", —¢)
Is controllable (using previous controllability + feedback result)
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| Observers — Why/How (contd.) |

e (AT, —¢) controllable — — [¢] AT .. | (AT)" %z| (4T)" ¢
must be full rank

T
o — |E|ATE| - |(AT)"*E|(AT)" '] must be full rank

7
— A ——

e  |+—¢c"A> —— | must be full rank

just the OBSERVABILITY matrix

At —

o Conclusion: if a system is observable, we can
build an observer for it whose estimate z[t] will
approximate 7t} more and more closely with t
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Observer: Rotation Matrix Example |
. [xl[t+1]] B [cos(@) —sin(ﬁ)] [xl[t]] | y[t] - xl[t] — [1 O} f[t]

xa|t + 1] \Siﬂ(@) cos(6) | Ta|t] X ,
A cr
g [0 -1 <= (10
-example.9_2—>A_[1 O_—)O—[%ETA_)]—[O _1]
* side note: eigenvalues of A: —) — BIBO unstable  fulrank

e let [ = [lll,then A+T5T:[ h _1]

l2 1 -+ l2 0
i T —4(1
> elgenvalues (see the notes). )\1,2 — %1 + [y (2 + l2)

 and can easily show: [{ = \{ + o, b =X\ —1
*i.e., can set/ to obtain any desired eigenvalues
* warning: if complex, ensure evs are complex conjugates
> what will happen if you don’t?
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(Observer: Rot. Matrix Example (contd.)]

zi[t+1]|  |cos(f) —sin(0)| |z1[t] t = H =11 0|27+t
° [azg[t+ 1]] _\[Sin(ﬁ) cos(6) ], [xg[t]] 3 y[ ] 33‘1[ ] \[ 133[ ]
A ct
*nowtry:0 =nr— A= [_01 _01] — not observable (recal)
® A—FZ_)E)T — [_1;_ ll _01]

> eigenvalues (see the notes): [\ = —1] Ao =11 — 1

cannot be changed/stabilized using |
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Observability: The Continuous Case

* Observability for C.T. state-space systems
* and implications for placing observer eigenvalues

* EXACTLY THE SAME CRITERIA

e
——cdA—
° |« clA2 ——

e Stability for C.T. means Re(eigenvalues) <0

— AT —

must be full rank
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| Observers: Accurate Positioning |

* Physical motion is inherently marginally stable
* due to the relationship between position, velocity and
acceleration
> T=v, UV=a

* small error in a — growing error in v
* small error in v — growing error in X

* You are in a car in a featureless desert
* you know the position where you started
* you record your acceleration (along x and y directions)
* o estimate your current position
> you integrate accel./velocity to predict your current position

> but inevitable small errors (eg, play in accelerator) make your

predicted position more and more inaccurate (m. stability)

* soon, your prediction becomes completely useless — miles from where
you really are

* NOT A VERY PRACTICALLY USEFUL WAY TO LOCATE YOURSELF
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| Observers for Positioning (contd.)

* see the notes for the math

* Enter GPS A
* you have a GPS receiver and position calculator

> but GPS isn’t perfectly accurate either (though much better than
our integration technique, aka “dead reckoning”)

» can easily be a few 10s of feet off

* Can we combine dead reckoning and GPS
* for better accuracy than GPS alone?

* YES: feed GPS position data into an observer!
e stabilize the observer by choosing | wisely
e even with perpetual small GPS and acceleration errors
> the observer’s estimate is far better than just the GPS alone!*

* This is what all serious navigational systems use

* with an additional twist: | keeps updating, becomes l[ ]
* this is the famous KALMAN FILTER

> used in all rockets, drones, autonomous cars, ships, ...
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Rudolf Kalman
“inventor” of control theory: 1950s/60s

* state-space representations
e stablility, controllability, observability and implications

e Kalman filter

* initially received with “vast skepticism” - not accepted for publication!

* |ater adopted by the Apollo rocket program, the Space Shulttle,
submarines, cruise missiles, UAVs/drones, autonomous vehicles, ...

B I” ’
™
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Who Invented Eigendecomposition?

1852 - 1858

James Joseph Sylvester (1814-97) Arthur Cayley (1821-95)

also coined the Cayley-Hamilton
term “matrix” Theorem
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Who Invented Matrices?

* known and used in China - before 100BC (!)

e explained in Nine Chapters of the Mathematical Art (1000-100 BC)
> used to solve simultaneous eqgns; they knew about determinants

* 1545: brought from China to Italy (by Cardano)
* 1683: Seki (“Japan’s Newton”) used matrices

* developed in Europe by Gauss and many others
e finally, into its modern form by Cayley (mid 1800s)

~ Cardano Gauss Cayley

1‘-
vy e gy
N o
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Charles Proteus Steinmetz
inventor of the phasor

* “Complex Quantities and their Use in Electrical
Engineering”, July 1893

e revolutionized AC circuit/transmission calculations

L, S

.
-

* suffered from hereditary dwarfism, hunchback, and hip dysplasia
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