EE16B, Spring 2018 UC Berkeley EECS

Maharbiz and Roychowdhury

Lecture 5B: Open QA Session

Today: Open Q/A Session

- primarily on state space r. and beyond
- circuits: Michel should be here at 3pm
-Why?
- feedback on Piazza: many students seem lost \rightarrow especially on state-space representations and beyond
- PLEASE SEE @309 on Piazza
\rightarrow https://piazza.com/class/jccq3d39dkzeu?cid=309
\rightarrow "Incredibly lost with the recent curriculum ..."

Steps to Help

- this Q/A session
- discussions next week will not move forward as originally planned
- giving you a little time to catch up
- special discussion section ("LOST") each week?
- logistics yet to be figured out
- each class from now on will have a "LOST in class x" Piazza page
- for questions specific to that class
- please enter your questions ASAP (during class)
- version of slides with animations will be put up
- also, the handwritten notes during each class

Tips for Coping with This Class

- read through slides/notes BEFORE each class
- identify (write down) tentative questions
\rightarrow if still unclear during/after class, ask (or on Piazza)
- especially, try to figure out the flow
\rightarrow if you have flow questions, make sure to ask in class
- immediately after class (ideally)
- put your questions in on the "LOST in lecture x" page
- come to my office hours
- re-read the material
\rightarrow really strongly recommended: re-write the material with your own hands (in your own writing) after each lecture
- each lecture relies on understanding prior ones
- if you don't understand, you WILL lose it very quickly
\rightarrow (this is likely the current situation for state-space and beyond)

Per feedback on Piazza

- "you should know how to do this and ask for help if you can't at this point in the course"
- prior to starting on 16B
\rightarrow basic EE: KVL, KCL, element equations
- good facility at writing down the equations for simple circuits using the above (not just phasor form, but also using d/dt)
\rightarrow complex numbers and operations w them: really well!
- conjugates; addition/multiplication; polar representation; Euler's (aka de Moivre's) formula; magnitude and phase
\rightarrow vector and matrix notation
- including vector functions of vector arguments
\rightarrow the exponential function $\mathrm{e}^{\text {at }}$ and its general behaviour
\rightarrow matrix and linear algebra
- matrix multiplication
- rank (row rank, col. rank), determinants and inverses of square matrices
- the minor formula for the determinant; how to invert a 2×2 matrix by hand (correctly!)
- characteristic polynomials of square matrices

Per feedback on @309 (contd.)

- "you should know how to do this and ask for help if you can't at this point in the course"
- prior to starting on 16B (contd.)
\rightarrow basic calculus
- differentiation, integration, simple differential equations
- functions of multiple variables, partial derivatives, total derivative
\rightarrow trigonometry
- closely related to complex numbers (Euler/de Moivre Formula)
\rightarrow co-ordinate geometry
- connection with simultaneous equations (linear and nonlinear)
- graphical solution of equations
\rightarrow linearity: general definitions and concepts
- being able to check if a system is linear or nonlinear
\rightarrow Taylor series
\rightarrow eigendecomposition (eigenvalues, eigenvectors)
- eigenvalues as the roots of the char. poly.
\rightarrow no doubt missed some topics - please add

Per feedback on @309 (contd.)

- "you should know how to do this and ask for help if you can't at this point in the course"
- introduced in my lectures (state-space onwards) so far:
\rightarrow simple RC and RLC examples: writing in state-space form
\rightarrow the pendulum example: writing the equations, then putting them in state space form
\rightarrow discrete time state space form, as illustrated by examples
\rightarrow concepts of inputs, outputs and state
- as far as illustrated by the examples, at least
\rightarrow general state space form $d x / d t($ or $x[t+1])=f(x, u) ; y=g(x, u)$
- and how the pendulum, RLC, etc. can be cast in this form
- which are linear, which are nonlinear
\rightarrow how to specialize the s.s.r to the DC/equilibrium case
- how to solve the DC/eq. equation for simple scalar systems
- including graphically - the concept of multiple DC op pts

Per feedback on Piazza (contd.)

- "you should know how to do this and ask for help if you can't at this point in the course"
- introduced in my lectures so far (contd.):
\rightarrow how to apply Taylor series on the function $f(.,$.$) to linearize a$ system around a DC op pt
- both scalar and vector examples
- the pendulum example - familiarity with and understanding of - regular and inverted pendulum DC op pts; linearizations about them
- Jacobian matrices, their definition, w some practice working them out
\rightarrow stability (dynamical system stability)
- basic intuitive concepts of stability
- stability for scalar state space representations: $\operatorname{Re}(a)<0$
- and why (the derivations)
- stability for vector state space representations
- using eigendecomposition to diagonalize/decompose into scalar systems
- (familiarity w the derivations, too)

