EE16B, Spring 2018 UC Berkeley EECS

Maharbiz and Roychowdhury

Lecture 5B: Open QA Session

Today: Open Q/A Session

- primarily on state space r. and beyond
 - circuits: Michel should be here at 3pm
- Why?
 - feedback on Piazza: many students seem lost
 - especially on state-space representations and beyond
 - PLEASE SEE @309 on Piazza
 - https://piazza.com/class/jccq3d39dkzeu?cid=309
 - * "Incredibly lost with the recent curriculum ..."

Steps to Help

- this Q/A session
- discussions next week will not move forward as originally planned
 - giving you a little time to catch up
- special discussion section ("LOST") each week?
 - logistics yet to be figured out
- each class from now on will have a "LOST in class x" Piazza page
 - for questions specific to that class
 - please enter your questions ASAP (during class)
- version of slides with animations will be put up
 - also, the handwritten notes during each class

Tips for Coping with This Class

- read through slides/notes BEFORE each class
 - identify (write down) tentative questions
 - if still unclear during/after class, ask (or on Piazza)
 - especially, try to figure out the flow
 - ➔ if you have flow questions, make sure to ask in class
- immediately after class (ideally)
 - put your questions in on the "LOST in lecture x" page
 - come to my office hours
 - re-read the material
 - really strongly recommended: re-write the material with your own hands (in your own writing) after each lecture

each lecture relies on understanding prior ones

- if you don't understand, you WILL lose it very quickly
 - (this is likely the current situation for state-space and beyond)

Per feedback on Piazza

- "you should know how to do this and ask for help if you can't at this point in the course"
 - prior to starting on 16B
 - basic EE: KVL, KCL, element equations
 - good facility at writing down the equations for simple circuits using the above (not just phasor form, but also using d/dt)
 - complex numbers and operations w them: really well!
 - conjugates; addition/multiplication; polar representation; Euler's (aka de Moivre's) formula; magnitude and phase
 - vector and matrix notation
 - including vector functions of vector arguments
 - the exponential function e^{at} and its general behaviour
 - matrix and linear algebra
 - matrix multiplication
 - rank (row rank, col. rank), determinants and inverses of square matrices
 - the minor formula for the determinant; how to invert a 2x2 matrix by hand (correctly!)
 - characteristic polynomials of square matrices

Per feedback on @309 (contd.)

- "you should know how to do this and ask for help if you can't at this point in the course"
 - prior to starting on 16B (contd.)
 - basic calculus
 - differentiation, integration, simple differential equations
 - functions of multiple variables, partial derivatives, total derivative
 - trigonometry
 - closely related to complex numbers (Euler/de Moivre Formula)
 - co-ordinate geometry
 - connection with simultaneous equations (linear and nonlinear)
 - graphical solution of equations
 - Inearity: general definitions and concepts
 - being able to check if a system is linear or nonlinear
 - Taylor series
 - eigendecomposition (eigenvalues, eigenvectors)
 - eigenvalues as the roots of the char. poly.
 - no doubt missed some topics please add

Per feedback on @309 (contd.)

- "you should know how to do this and ask for help if you can't at this point in the course"
 - introduced in my lectures (state-space onwards) so far:
 - simple RC and RLC examples: writing in state-space form
 - the pendulum example: writing the equations, then putting them in state space form
 - discrete time state space form, as illustrated by examples
 - concepts of inputs, outputs and state
 - as far as illustrated by the examples, at least
 - → general state space form dx/dt (or x[t+1]) = f(x,u); y = g(x,u)
 - and how the pendulum, RLC, etc. can be cast in this form
 - which are linear, which are nonlinear
 - how to specialize the s.s.r to the DC/equilibrium case
 - how to solve the DC/eq. equation for simple scalar systems
 - including graphically the concept of multiple DC op pts

Per feedback on Piazza (contd.)

- "you should know how to do this and ask for help if you can't at this point in the course"
 - introduced in my lectures so far (contd.):
 - how to apply Taylor series on the function f(.,.) to linearize a system around a DC op pt
 - both scalar and vector examples
 - the pendulum example familiarity with and understanding of
 - regular and inverted pendulum DC op pts; linearizations about them
 - Jacobian matrices, their definition, w some practice working them out
 - stability (dynamical system stability)
 - basic intuitive concepts of stability
 - stability for scalar state space representations: Re(a) < 0
 - and why (the derivations)
 - stability for vector state space representations
 - using eigendecomposition to diagonalize/decompose into scalar systems
 - (familiarity w the derivations, too)