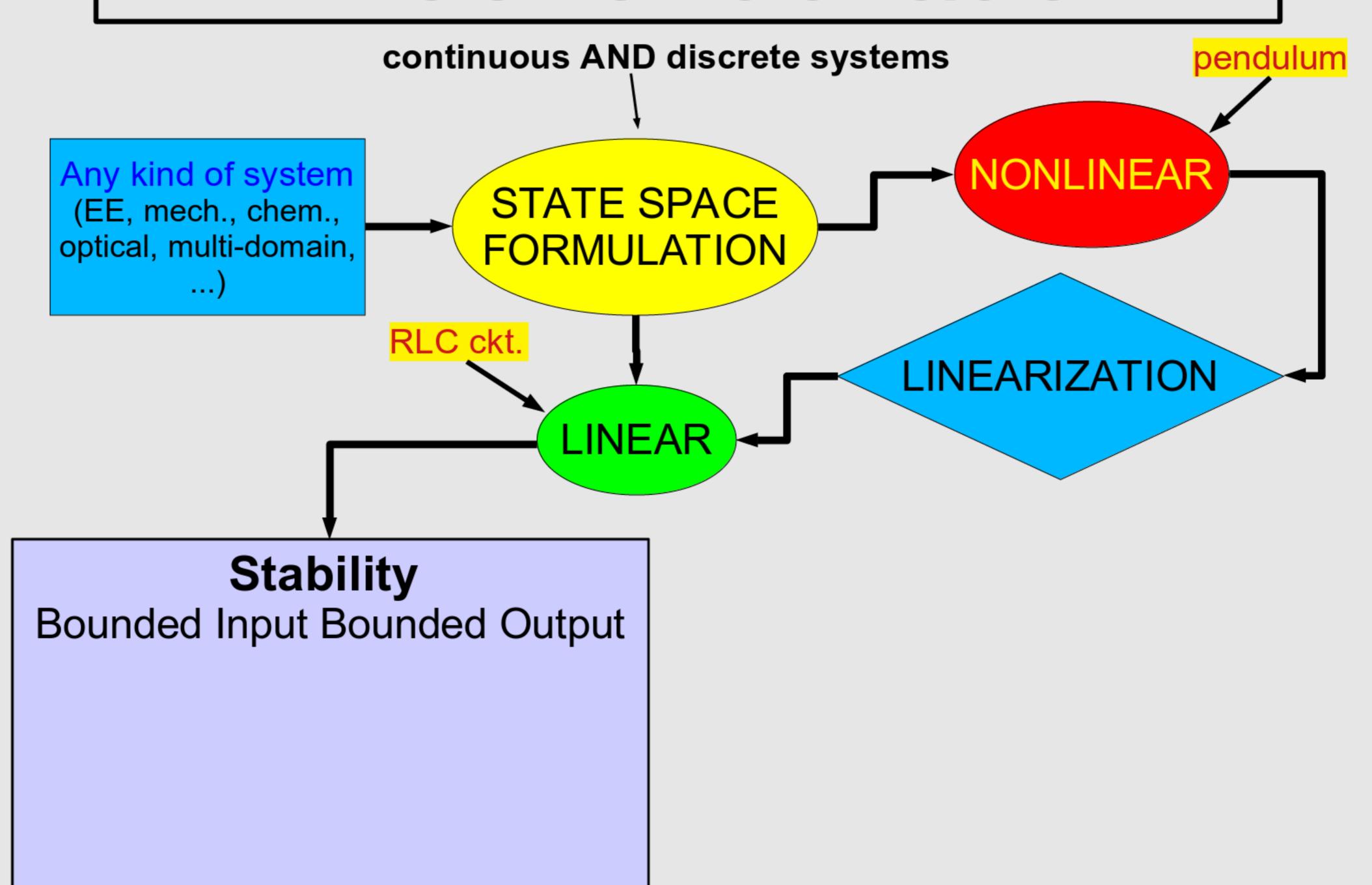
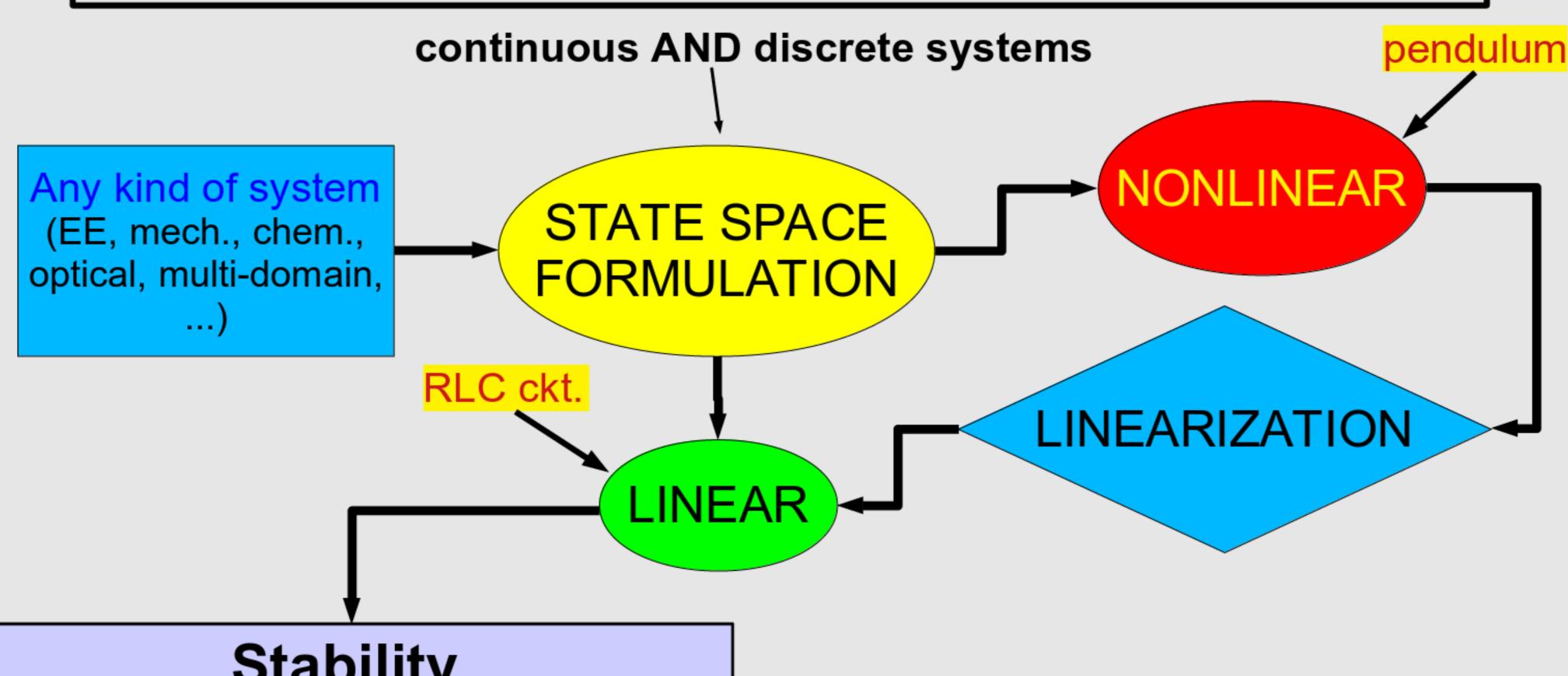
EE16B, Spring 2018 UC Berkeley EECS

Maharbiz and Roychowdhury

Lectures 6A & 6B: Overview Slides

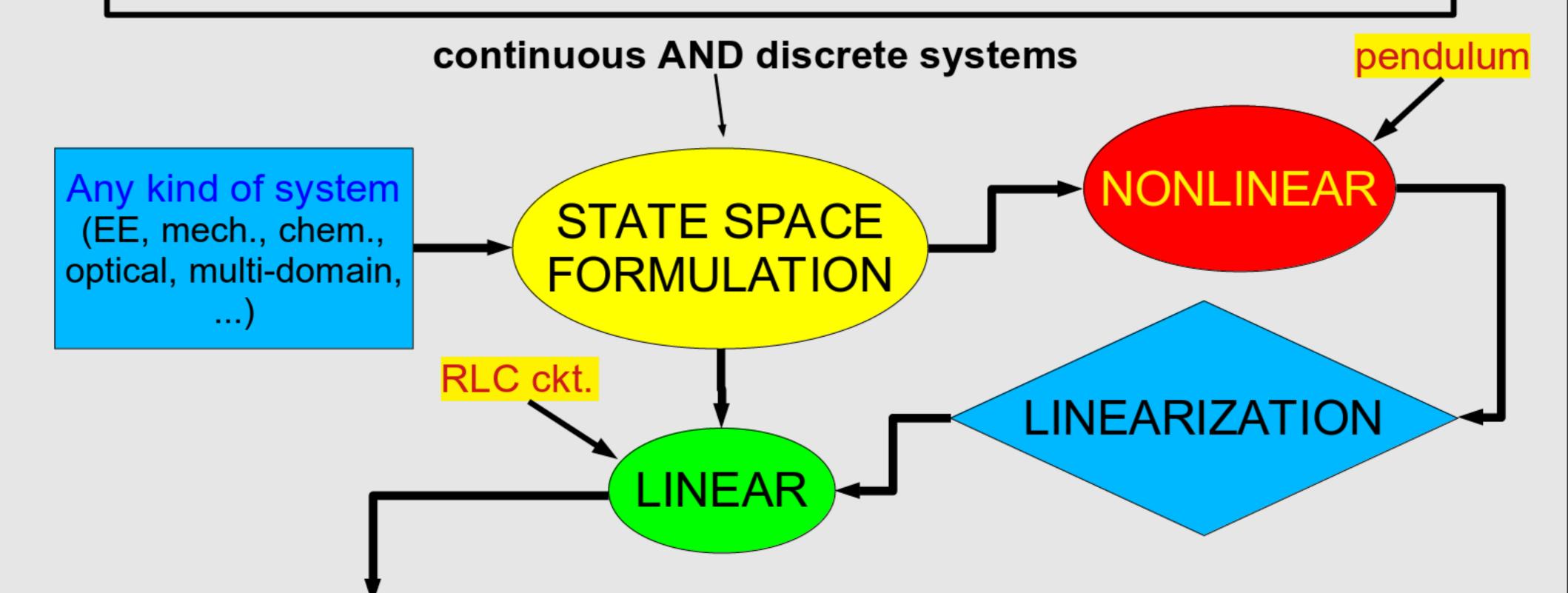
Controllability and Feedback





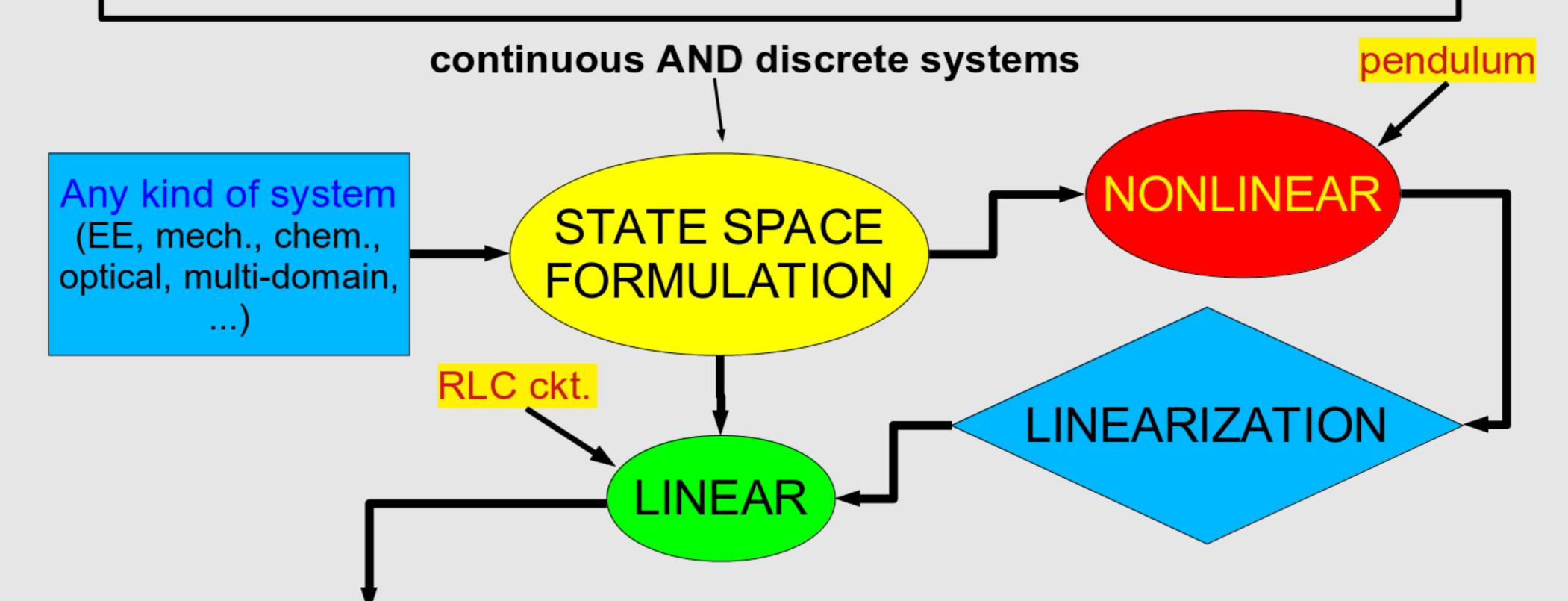
Stability

Bounded Input Bounded Output IC: blows up or dies down



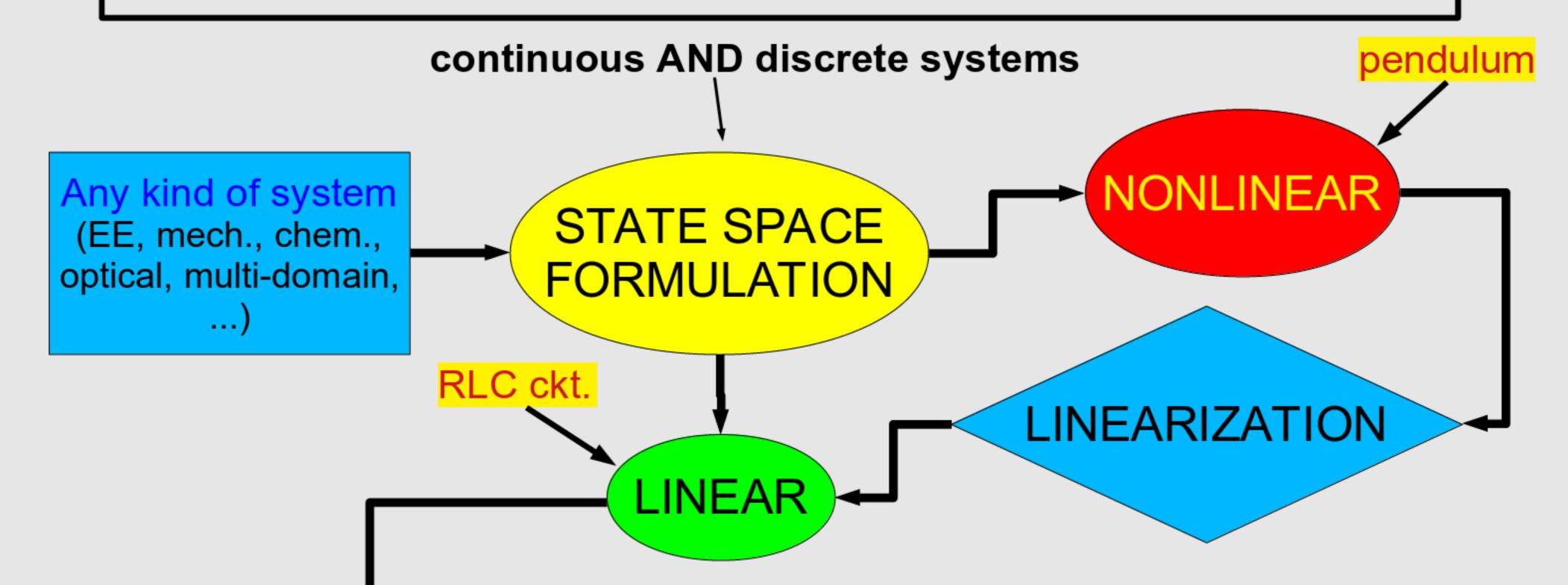
Stability

Bounded Input Bounded Output IC: blows up or dies down eigendecomposition turns the system into n scalar ones



Stability

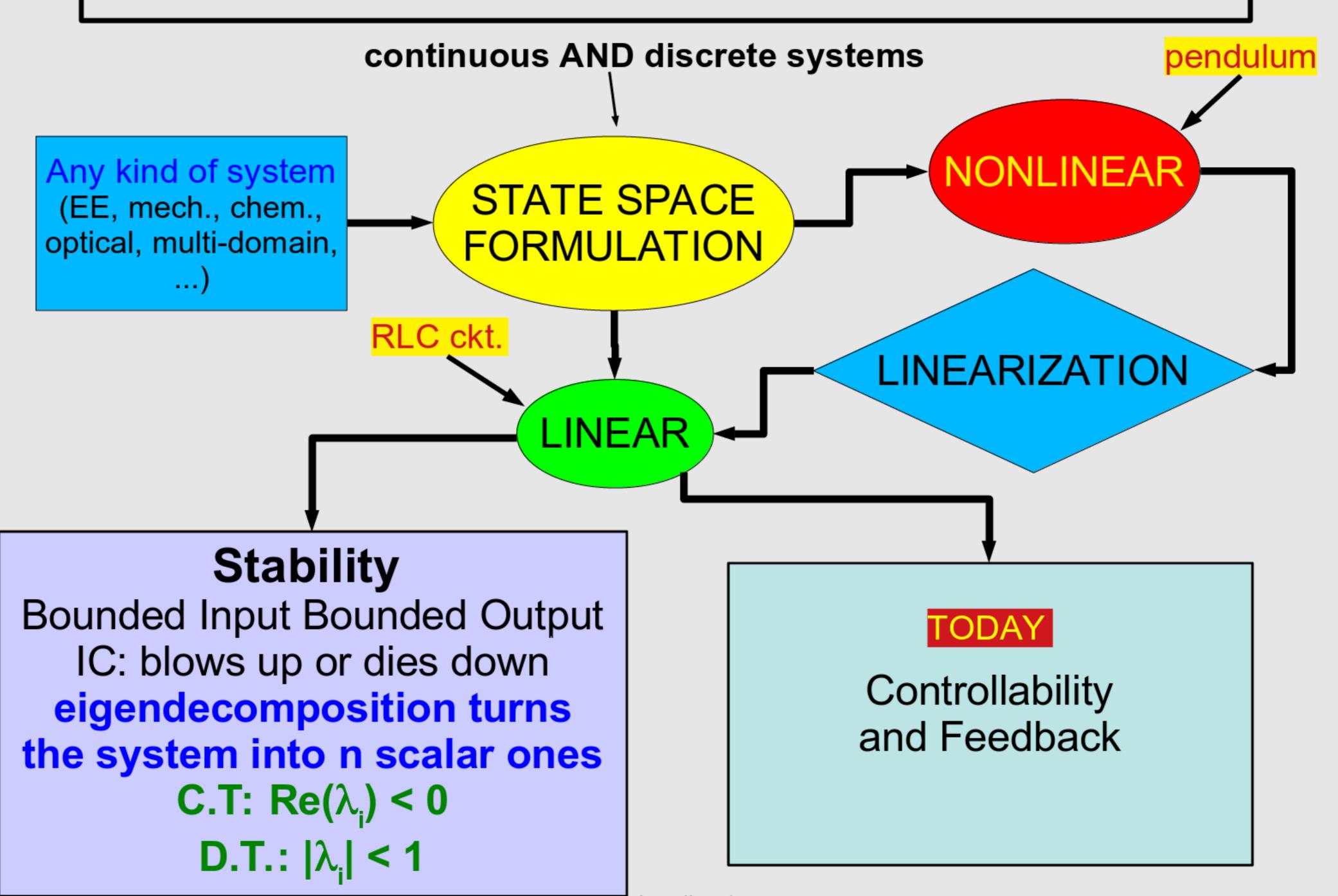
Bounded Input Bounded Output IC: blows up or dies down eigendecomposition turns the system into n scalar ones C.T: $Re(\lambda_i) < 0$



Stability

Bounded Input Bounded Output IC: blows up or dies down eigendecomposition turns the system into n scalar ones C.T: $Re(\lambda_i) < 0$ D.T.: $|\lambda_i| < 1$

EE16B, Spring 2018, Lectures on Controllability and Feedback (Roychowdhury)



- Given (linearized) S.S.R: $\Delta \vec{x}[t+1] = A\Delta \vec{x}[t] + \vec{b}\Delta u[t]$
 - can you drive $\Delta \vec{x}[t]$ to any value you want (using $\Delta \vec{u}[t]$)?
 - \Rightarrow ie, can you **control** $\Delta \vec{x}[t]$ completely?

- Given (linearized) S.S.R: $\Delta \vec{x}[t+1] = A\Delta \vec{x}[t] + \vec{b}\Delta u[t]$
 - can you drive $\Delta \vec{x}[t]$ to any value you want (using $\Delta \vec{u}[t]$)?
 - \rightarrow ie, can you **control** $\Delta \vec{x}[t]$ completely?

$$\Delta \vec{x}[t] = A^t \Delta \vec{x}[0] + \sum_{i=1}^t A^{t-i} \vec{b} \Delta u[i-1]$$

- Given (linearized) S.S.R: $\Delta \vec{x}[t+1] = A\Delta \vec{x}[t] + \vec{b}\Delta u[t]$
 - can you drive $\Delta \vec{x}[t]$ to any value you want (using $\Delta \vec{u}[t]$)?
 - \rightarrow ie, can you **control** $\Delta \vec{x}[t]$ completely?

$$\Delta \vec{x}[t] = A^t \Delta \vec{x}[0] + \sum_{i=1}^t A^{t-i} \vec{b} \Delta u[i-1]$$

$$\Delta \vec{x}[n] = A^n \Delta x[0] + \left[A^{n-1} \vec{b}, A^{n-2} \vec{b}, \cdots, A \vec{b}, \vec{b} \right] \begin{bmatrix} \Delta u[0] \\ \Delta u[1] \\ \vdots \\ \Delta u[n-2] \\ \Delta u[n-1] \end{bmatrix}$$

- Given (linearized) S.S.R: $\Delta \vec{x}[t+1] = A\Delta \vec{x}[t] + \vec{b}\Delta u[t]$
 - can you drive $\Delta \vec{x}[t]$ to any value you want (using $\Delta \vec{u}[t]$)?
 - \Rightarrow ie, can you **control** $\Delta \vec{x}[t]$ completely?
 - say $\Delta \vec{x}[0] = 0$ (w.l.o.g, see notes)

$$\Delta \vec{x}[t] = A^t \Delta \vec{x}[0] + \sum_{i=1}^t A^{t-i} \vec{b} \Delta u[i-1]$$

$$\Delta \vec{x}[n] = A^n \Delta x[0] + \begin{bmatrix} A^{n-1}\vec{b}, A^{n-2}\vec{b}, \cdots, A\vec{b}, \vec{b} \end{bmatrix} \begin{bmatrix} \Delta u[0] \\ \Delta u[1] \\ \vdots \\ \Delta u[n-2] \\ \Delta u[n-1] \end{bmatrix}$$

- Given (linearized) S.S.R: $\Delta \vec{x}[t+1] = A\Delta \vec{x}[t] + \vec{b}\Delta u[t]$
 - can you drive $\Delta \vec{x}[t]$ to any value you want (using $\Delta \vec{u}[t]$)?
 - \Rightarrow ie, can you **control** $\Delta \vec{x}[t]$ completely?
 - say $\Delta \vec{x}[0] = 0$ (w.l.o.g, see notes)

$$\Delta \vec{x}[t] = A^t \Delta \vec{x}[0] + \sum_{i=1}^t A^{t-i} \vec{b} \Delta u[i-1]$$

$$\Delta \vec{x}[n] = \begin{bmatrix} \Delta u[0] \\ \Delta u[1] \end{bmatrix}$$

$$\begin{bmatrix} \Delta u[n] \\ \Delta u[1] \end{bmatrix}$$

$$\vdots$$

$$\Delta u[n-2] \\ \Delta u[n-1] \end{bmatrix}$$

nxn matrix nx1 vector

- Given (linearized) S.S.R: $\Delta \vec{x}[t+1] = A\Delta \vec{x}[t] + \vec{b}\Delta u[t]$
 - can you drive $\Delta \vec{x}[t]$ to any value you want (using $\Delta \vec{u}[t]$)?
 - \Rightarrow ie, can you **control** $\Delta \vec{x}[t]$ completely?
 - say $\Delta \vec{x}[0] = 0$ (w.l.o.g, see notes)

$$\Delta \vec{x}[t] = A^t \Delta \vec{x}[0] + \sum_{i=1}^t A^{t-i} \vec{b} \Delta u[i-1]$$

$$\Delta \vec{x}[n] = \begin{bmatrix} \Delta u[0] \\ \Delta u[1] \end{bmatrix}$$

$$\begin{bmatrix} \Delta u[n] \\ \Delta u[1] \end{bmatrix}$$

$$\vdots$$

$$\Delta u[n-2] \\ \Delta u[n-1] \end{bmatrix}$$

• would like to make $\Delta \vec{x}[n]$ anything we like in \mathbb{R}^n

nxn matrix nx1 vector

- Given (linearized) S.S.R: $\Delta \vec{x}[t+1] = A\Delta \vec{x}[t] + \vec{b}\Delta u[t]$
 - can you drive $\Delta \vec{x}[t]$ to any value you want (using $\Delta \vec{u}[t]$)?
 - \rightarrow ie, can you **control** $\Delta \vec{x}[t]$ completely?
 - say $\Delta \vec{x}[0] = 0$ (w.l.o.g, see notes)

must be full rank (ie, rank = n)

$$\Delta \vec{x}[t] = A^t \Delta \vec{x}[0] + \sum_{i=1}^t A^{t-i} \vec{b} \Delta u[i-1]$$

$$\Delta \vec{x}[n] = \begin{bmatrix} \Delta u[0] \\ \Delta u[1] \\ \vdots \\ \Delta u[n-2] \\ \Delta u[n-2] \\ \Delta u[n-1] \end{bmatrix}$$

- would like to make $\Delta \vec{x}[n]$ anything we like in \mathbb{R}^n
- rank: number of lin. indep. columns (= # of lin. indep. rows)

nxn matrix nx1 vector

- Given (linearized) S.S.R: $\Delta \vec{x}[t+1] = A\Delta \vec{x}[t] + \vec{b}\Delta u[t]$
 - can you drive $\Delta \vec{x}[t]$ to any value you want (using $\Delta \vec{u}[t]$)?
 - \rightarrow ie, can you **control** $\Delta \vec{x}[t]$ completely?
 - say $\Delta \vec{x}[0] = 0$ (w.l.o.g, see notes)

must be full rank (ie, rank = n)

$$\Delta \vec{x}[t] = A^t \Delta \vec{x}[0] + \sum_{i=1}^t A^{t-i} \vec{b} \Delta u[i-1]$$

$$\Delta \vec{x}[n] = \begin{bmatrix} \Delta u[0] \\ \Delta u[1] \\ \vdots \\ \Delta u[n-2] \\ \Delta u[n-2] \\ \Delta u[n-1] \end{bmatrix}$$

- would like to make $\Delta \vec{x}[n]$ anything we like in \mathbb{R}^n
- rank: number of lin. indep. columns (= # of lin. indep. rows)

• span($\left[A^{t-1}\vec{b} \mid A^{t-2}\vec{b} \mid \cdots \mid A\vec{b} \mid \vec{b}\right]$) = span($\left[\vec{b} \mid A\vec{b} \mid \cdots \mid A^{t-1}\vec{b}\right]$)

• span(
$$[A^{t-1}\vec{b} | A^{t-2}\vec{b} | \cdots | A\vec{b} | \vec{b}]$$
) = span($[\vec{b} | A\vec{b} | \cdots | A^{t-1}\vec{b}]$)

$$\bullet \ A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \quad B = \vec{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

• span(
$$[A^{t-1}\vec{b} | A^{t-2}\vec{b} | \cdots | A\vec{b} | \vec{b}]$$
) = span($[\vec{b} | A\vec{b} | \cdots | A^{t-1}\vec{b}]$)

•
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \quad B = \vec{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \ [B \mid AB \mid A^2B \mid \cdots] = \begin{bmatrix} 1 & 1 & 1 & \cdots \\ 0 & 0 & 0 & \cdots \end{bmatrix}$$

• span(
$$\left[A^{t-1}\vec{b} \mid A^{t-2}\vec{b} \mid \cdots \mid A\vec{b} \mid \vec{b}\right]$$
) = span($\left[\vec{b} \mid A\vec{b} \mid \cdots \mid A^{t-1}\vec{b}\right]$)

$$\bullet \ A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \quad B = \vec{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} B \mid AB \mid A^2B \mid \cdots \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots \\ 0 & 0 & 0 & \cdots \end{bmatrix}$$
 rank = 1 < n=2

• span($\left[A^{t-1}\vec{b} \mid A^{t-2}\vec{b} \mid \cdots \mid A\vec{b} \mid \vec{b}\right]$) = span($\left[\vec{b} \mid A\vec{b} \mid \cdots \mid A^{t-1}\vec{b}\right]$)

$$\bullet \ A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \quad B = \vec{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} B \mid AB \mid A^2B \mid \cdots \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots \\ 0 & 0 & 0 & \cdots \end{bmatrix}$$

$$\begin{array}{c} \text{rank = 1 < n=2} \end{array}$$

• span(
$$[A^{t-1}\vec{b} | A^{t-2}\vec{b} | \cdots | A\vec{b} | \vec{b}]$$
) = span($[\vec{b} | A\vec{b} | \cdots | A^{t-1}\vec{b}]$)

•
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$
, $B = \vec{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} B \mid AB \mid A^2B \mid \cdots \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots \\ 0 & 0 & 0 & \cdots \end{bmatrix}$ rank = 1 < n=2

• The system:
$$\begin{vmatrix} \Delta x_1 \\ \Delta x_2 \end{vmatrix}$$

• The system:
$$\begin{bmatrix} \Delta x_1[t+1] \\ \Delta x_2[t+1] \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \Delta x_1[t] \\ \Delta x_2[t] \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$

• span(
$$[A^{t-1}\vec{b} | A^{t-2}\vec{b} | \cdots | A\vec{b} | \vec{b}]$$
) = span($[\vec{b} | A\vec{b} | \cdots | A^{t-1}\vec{b}]$)

$$\bullet \ A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \quad B = \vec{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} B \mid AB \mid A^2B \mid \cdots \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots \\ 0 & 0 & 0 & \cdots \end{bmatrix}$$

$$\begin{array}{c} \text{rank = 1 < n=2} \end{array}$$

• The system:
$$\begin{bmatrix} \Delta x_1[t+1] \\ \Delta x_2[t+1] \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \Delta x_1[t] \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \Delta x_1[t] \\ \Delta x_2[t] \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$

$$\Delta x_2[t+1] = 2\Delta x_2[t]$$

• span(
$$[A^{t-1}\vec{b} | A^{t-2}\vec{b} | \cdots | A\vec{b} | \vec{b}]$$
) = span($[\vec{b} | A\vec{b} | \cdots | A^{t-1}\vec{b}]$)

$$\bullet \ A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \quad B = \vec{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} B \mid AB \mid A^2B \mid \cdots \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots \\ 0 & 0 & 0 & \cdots \end{bmatrix}$$

$$\begin{array}{c} \text{rank = 1 < n=2} \end{array}$$

• The system:
$$\begin{bmatrix} \Delta x_1[t+1] \\ \Delta x_2[t+1] \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \Delta x_1[t] \\ \Delta x_2[t] \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$

 $\Delta u(t)$ has no influence on $\Delta x_2[t]$

• span(
$$[A^{t-1}\vec{b} | A^{t-2}\vec{b} | \cdots | A\vec{b} | \vec{b}]$$
) = span($[\vec{b} | A\vec{b} | \cdots | A^{t-1}\vec{b}]$)

•
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \quad B = \vec{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} B \mid AB \mid A^2B \mid \cdots \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots \\ 0 & 0 & 0 & \cdots \end{bmatrix}$$
not controllable

• The system:
$$\begin{bmatrix} \Delta x_1[t+1] \\ \Delta x_2[t+1] \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \Delta x_1[t] \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \Delta x_2[t] \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$

 $\Delta u(t)$ has no influence on $\Delta x_2[t]$ $\Delta x_2[t+1] = 2\Delta x_2[t]$

• When does $\vec{b}, A\vec{b}, \cdots$ run out of lin. indep vectors?

•
$$\operatorname{span}(\left[A^{t-1}\vec{b} \mid A^{t-2}\vec{b} \mid \cdots \mid A\vec{b} \mid \vec{b}\right]) = \operatorname{span}(\left[\vec{b} \mid A\vec{b} \mid \cdots \mid A^{t-1}\vec{b}\right])$$

•
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \quad B = \vec{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} B \mid AB \mid A^2B \mid \cdots \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots \\ 0 & 0 & 0 & \cdots \end{bmatrix}$$

not controllable

• The system:
$$\begin{bmatrix} \Delta x_1[t+1] \\ \Delta x_2[t+1] \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \Delta x_1[t] \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \Delta x_2[t] \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$

 $\Delta u(t)$ has no influence on $\Delta x_2[t]$ \longrightarrow $\Delta x_2[t+1] = 2\Delta x_2[t]$

- When does $\vec{b}, A\vec{b}, \cdots$ run out of lin. indep vectors?
 - every A has a minimal polynomial (result from lin. alg.)
 - ⇒ ie, for some k≤n, $A^k + c_{k-1}A^{k-1} + c_{k-2}A^{k-2} + \cdots + c_1A + c_0I = 0$

• span(
$$[A^{t-1}\vec{b} | A^{t-2}\vec{b} | \cdots | A\vec{b} | \vec{b}]$$
) = span($[\vec{b} | A\vec{b} | \cdots | A^{t-1}\vec{b}]$)

•
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \quad B = \vec{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} B \mid AB \mid A^2B \mid \cdots \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots \\ 0 & 0 & 0 & \cdots \end{bmatrix}$$

not controllable

• The system:
$$\begin{bmatrix} \Delta x_1[t+1] \\ \Delta x_2[t+1] \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \Delta x_1[t] \\ \Delta x_2[t] \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$

 $\Delta u(t)$ has no influence on $\Delta x_2[t]$ \longrightarrow $\Delta x_2[t+1] = 2\Delta x_2[t]$

$$\Delta x_2[t+1] = 2\Delta x_2[t]$$

- When does $\vec{b}, A\vec{b}, \cdots$ run out of lin. indep vectors?
 - every A has a minimal polynomial (result from lin. alg.)
 - ⇒ ie, for some k≤n, $A^k + c_{k-1}A^{k-1} + c_{k-2}A^{k-2} + \cdots + c_1A + c_0I = 0$
 - \rightarrow ie, $A^k \vec{b} = -c_{k-1} A^{k-1} \vec{b} c_{k-2} A^{k-2} \vec{b} \cdots c_1 A \vec{b} c_0 \vec{b}$

linear comb. of [b, Ab, A²b, ..., A^{k-1}b]

• span(
$$\left[A^{t-1}\vec{b} \mid A^{t-2}\vec{b} \mid \cdots \mid A\vec{b} \mid \vec{b}\right]$$
) = span($\left[\vec{b} \mid A\vec{b} \mid \cdots \mid A^{t-1}\vec{b}\right]$)

•
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \quad B = \vec{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} B \mid AB \mid A^2B \mid \cdots \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots \\ 0 & 0 & 0 & \cdots \end{bmatrix}$$

not controllable

• The system:
$$\begin{bmatrix} \Delta x_1[t+1] \\ \Delta x_2[t+1] \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \Delta x_1[t] \\ \Delta x_2[t] \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$

 $\Delta u(t)$ has no influence on $\Delta x_2[t]$ \longrightarrow $\Delta x_2[t+1] = 2\Delta x_2[t]$

- When does $\vec{b}, A\vec{b}, \cdots$ run out of lin. indep vectors?
 - every A has a minimal polynomial (result from lin. alg.)
 - ⇒ ie, for some k≤n, $A^k + c_{k-1}A^{k-1} + c_{k-2}A^{k-2} + \cdots + c_1A + c_0I = 0$
 - \rightarrow ie, $A^k \vec{b} = -c_{k-1} A^{k-1} \vec{b} c_{k-2} A^{k-2} \vec{b} \cdots c_1 A \vec{b} c_0 \vec{b}$

linear comb. of [b, Ab, A²b, ..., A^{k-1}b]

→ ie, Akb, Ak+1b, ... will not contribute new linearly indep. columns

- Every matrix A satisfies its own characteristic polynomial!
 - char. poly.: $p_A(\lambda) \triangleq det(A \lambda I)$ $= \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$

Every matrix A satisfies its own characteristic polynomial!

• char. poly.:
$$p_A(\lambda) \triangleq \det(A - \lambda I)$$
 scalar
$$= \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$$

Every matrix A satisfies its own characteristic polynomial!

• char. poly.:
$$p_A(\lambda) \triangleq det(A-\lambda I)$$
 scalar
$$= \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0$$

• C-H Thm:
$$p_A(A) = 0$$

$$\Rightarrow A^n + a_{n-1}A^{n-1} + \dots + a_1A + a_0 = 0$$

Every matrix A satisfies its own characteristic polynomial!

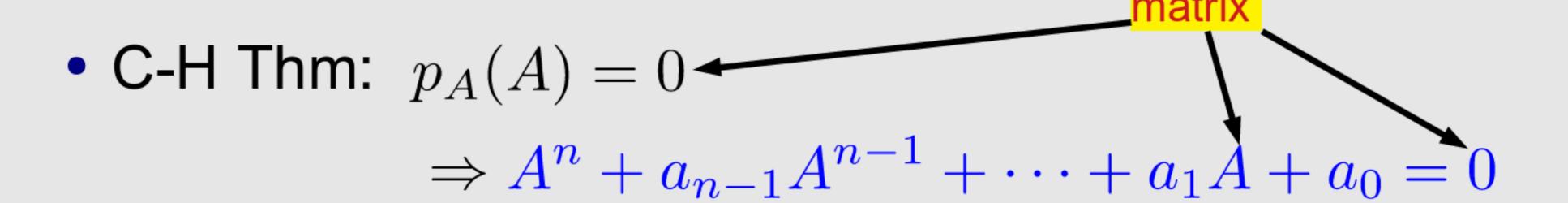
• char. poly.:
$$p_A(\lambda) \triangleq det(A - \lambda I)$$
 scalar
$$= \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0$$

• C-H Thm:
$$p_A(A) = 0$$
 $\Rightarrow A^n + a_{n-1}A^{n-1} + \dots + a_1A + a_0 = 0$

Every matrix A satisfies its own characteristic polynomial!

• char. poly.:
$$p_A(\lambda) \triangleq \det(A - \lambda I)$$

$$= \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$$



implication:

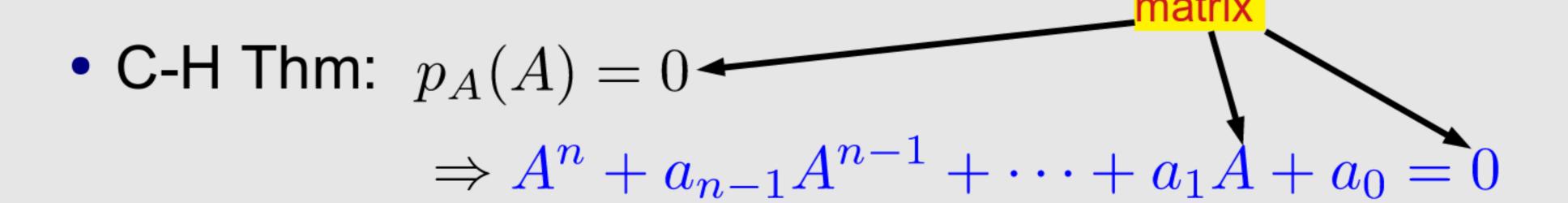
→
$$A^n \vec{b} = \underbrace{-a_{n-1}A^{n-1}\vec{b} - a_{n-2}A^{n-2}\vec{b} - \dots - a_1A\vec{b} - a_0\vec{b}}$$

[linear comb. of [b, Ab, A²b, ..., Aⁿ⁻¹b]]

Every matrix A satisfies its own characteristic polynomial!

• char. poly.:
$$p_A(\lambda) \triangleq \det(A - \lambda I)$$

$$= \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$$



implication:

→
$$A^n \vec{b} = \underline{-a_{n-1}A^{n-1}\vec{b} - a_{n-2}A^{n-2}\vec{b} - \dots - a_1A\vec{b} - a_0\vec{b}}$$

[linear comb. of [b, Ab, A²b, ..., Aⁿ⁻¹b]]

 ie, Aⁿ b, Aⁿ⁺¹ b, ... will not contribute new linearly indep. columns

Every matrix A satisfies its own characteristic polynomial!

• char. poly.:
$$p_A(\lambda) \triangleq det(A-\lambda I)$$

$$= \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0$$

• C-H Thm:
$$p_A(A) = 0$$
 $\Rightarrow A^n + a_{n-1}A^{n-1} + \cdots + a_1A + a_0 = 0$

implication:

→
$$A^n \vec{b} = \underbrace{-a_{n-1}A^{n-1}\vec{b} - a_{n-2}A^{n-2}\vec{b} - \dots - a_1A\vec{b} - a_0\vec{b}}$$

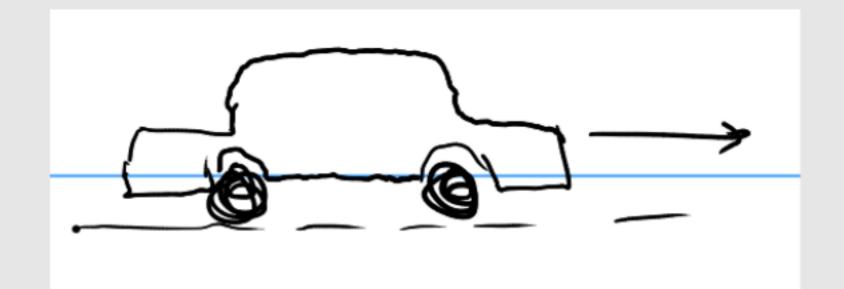
[linear comb. of [b, Ab, A²b, ..., Aⁿ⁻¹b]]

• ie, Aⁿ b, Aⁿ⁺¹ b, ... will not contribute new linearly indep. columns

if no eigenvalues repeated, then n is the degree of the minimal polynomial (ie, k=n)

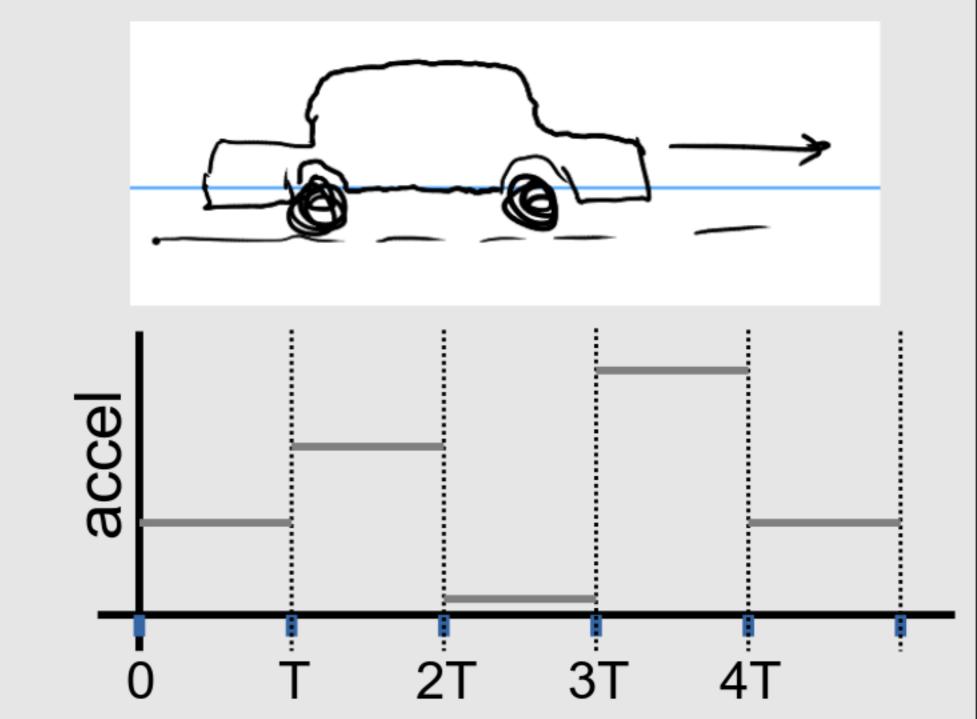
Example: Accelerating Car

control input: acceleration

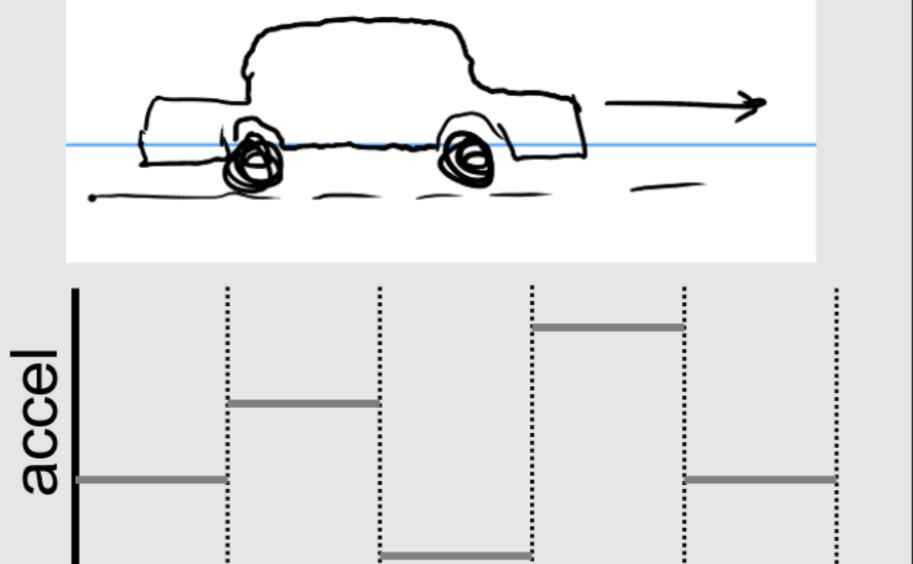


Example: Accelerating Car

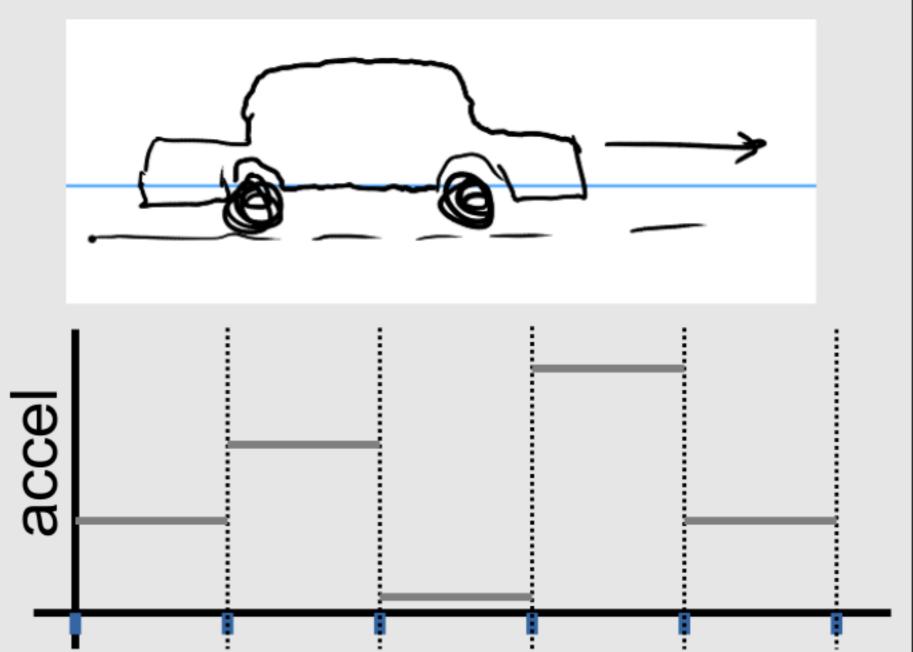
- control input: acceleration
 - can change only every T secs
 - stays constant in between



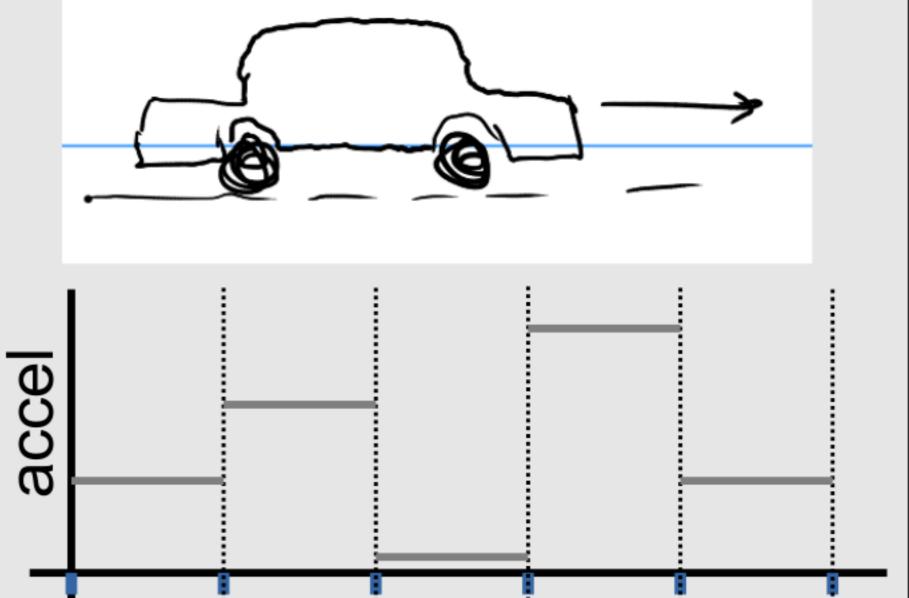
- control input: acceleration
 - can change only every T secs
 - stays constant in between
- Q: can we set its **position** AND **velocity** to whatever we want (at time = multiples of T)?



- control input: acceleration
 - can change only every T secs
 - stays constant in between
- Q: can we set its **position** AND **velocity** to whatever we want (at time = multiples of T)?
- analysis approach
 - find a discrete SSR for position/vel.
 - analyse its controllability

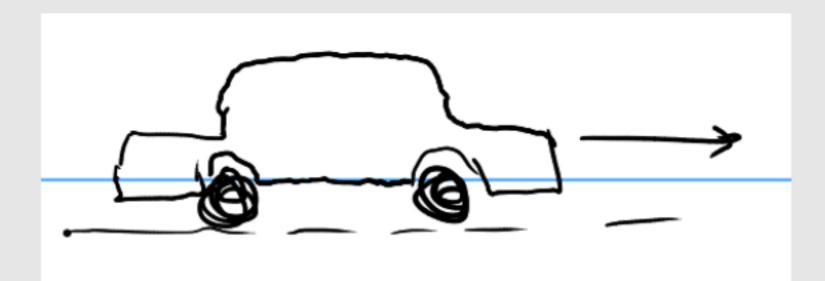


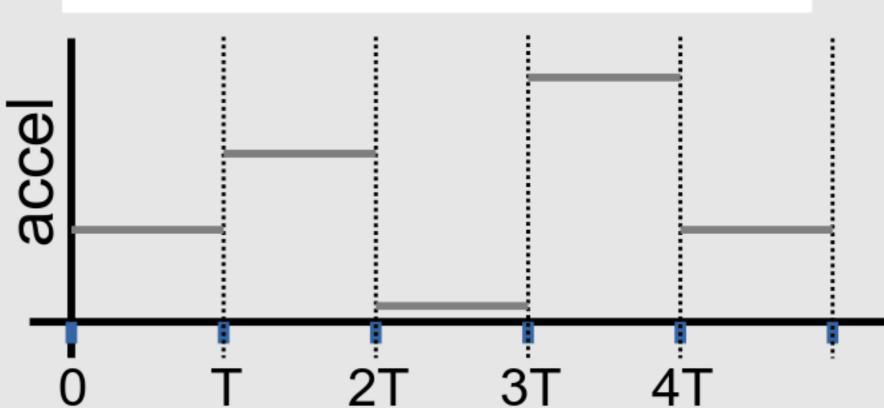
- control input: acceleration
 - can change only every T secs
 - stays constant in between
- Q: can we set its **position** AND **velocity** to whatever we want (at time = multiples of T)?
- analysis approach
 - find a discrete SSR for position/vel.
 - analyse its controllability
 - acceleration: a; velocity: v; position: x



- control input: acceleration
 - can change only every T secs
 - stays constant in between
- Q: can we set its **position** AND **velocity** to whatever we want (at time = multiples of T)?
- analysis approach
 - find a discrete SSR for position/vel.
 - analyse its controllability
 - acceleration: a; velocity: v; position: x

•
$$v(\tau) = \int_0^{\tau} a(\tau_2) d\tau_2$$
, $x(\tau) = \int_0^{\tau} v(\tau_2) d\tau_2$

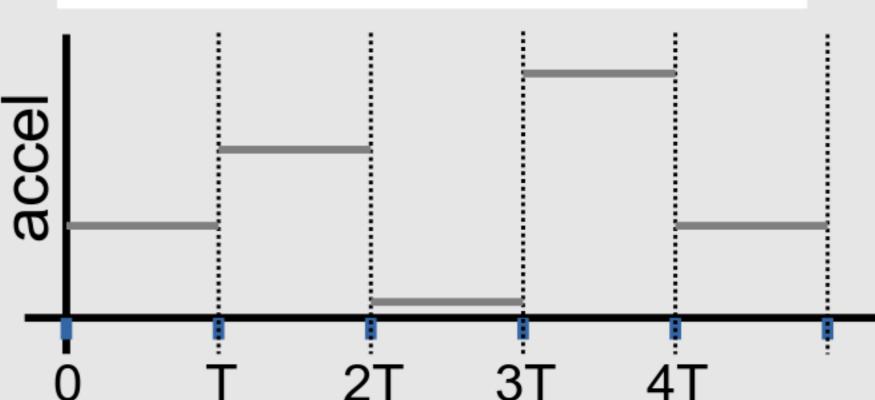




- control input: acceleration
 - can change only every T secs
 - stays constant in between
- Q: can we set its **position** AND **velocity** to whatever we want (at time = multiples of T)?
- analysis approach
 - find a discrete SSR for position/vel.
 - analyse its controllability

•
$$v(\tau) = \int_0^{\tau} a(\tau_2) d\tau_2$$
, $x(\tau) = \int_0^{\tau} v(\tau_2) d\tau_2$

•
$$v(\tau) - v(tT) = \int_{tT}^{\tau} a(\tau_2) d\tau_2$$

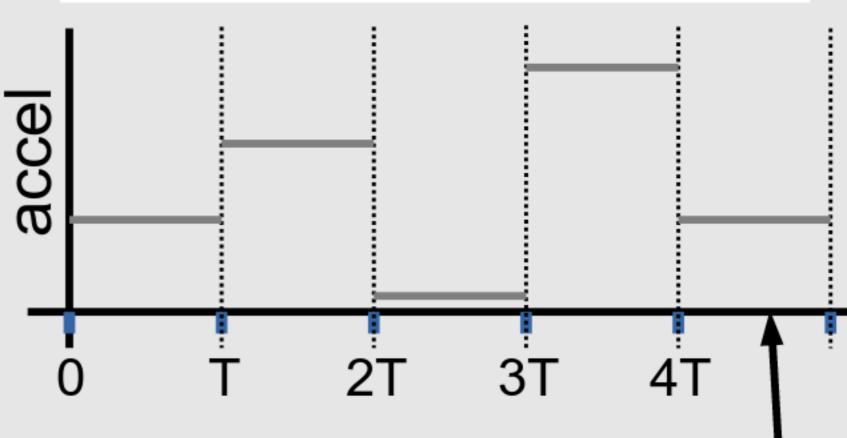


 $tT \le \tau \le (t+1)T$

- control input: acceleration
 - can change only every T secs
 - stays constant in between
- Q: can we set its **position** AND **velocity** to whatever we want (at time = multiples of T)?
- analysis approach
 - find a discrete SSR for position/vel.
 - analyse its controllability

•
$$v(\tau) = \int_0^{\tau} a(\tau_2) d\tau_2$$
, $x(\tau) = \int_0^{\tau} v(\tau_2) d\tau_2$

•
$$v(\tau) - v(tT) = \int_{tT}^{\tau} a(\tau_2) d\tau_2$$

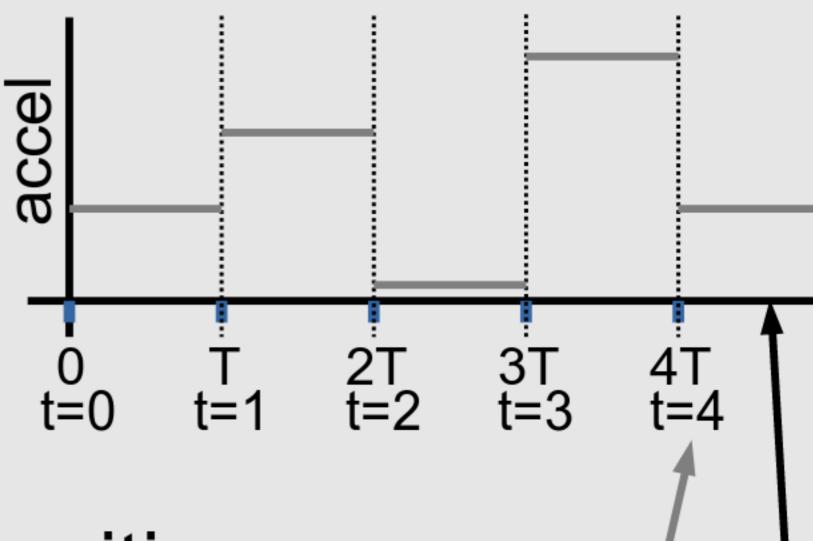


 $tT \le \tau \le (t+1)T$

- control input: acceleration
 - can change only every T secs
 - stays constant in between
- Q: can we set its **position** AND **velocity** to whatever we want (at time = multiples of T)?
- analysis approach
 - find a discrete SSR for position/vel.
 - analyse its controllability
 - acceleration: a; velocity: v; position: x

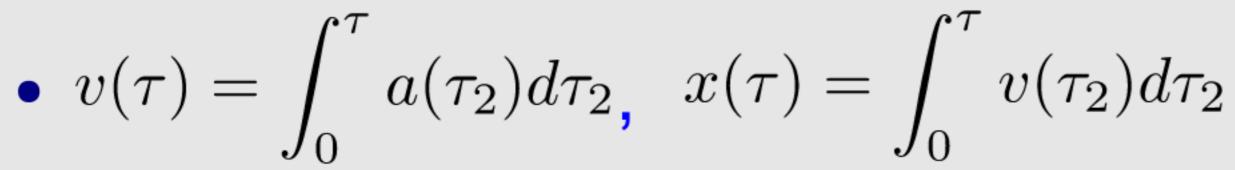
•
$$v(\tau) = \int_0^{\tau} a(\tau_2) d\tau_2$$
, $x(\tau) = \int_0^{\tau} v(\tau_2) d\tau_2$

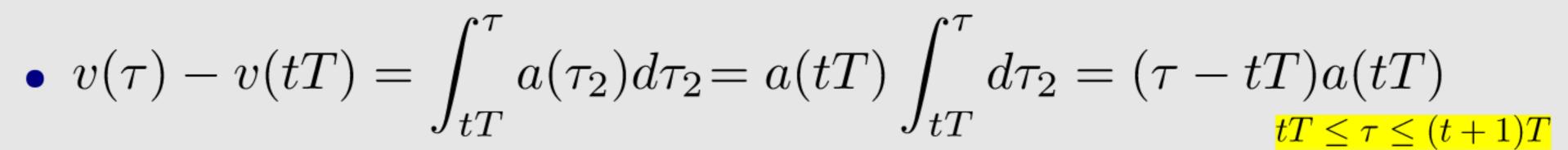
•
$$v(\tau) - v(tT) = \int_{tT}^{\tau} a(\tau_2) d\tau_2$$



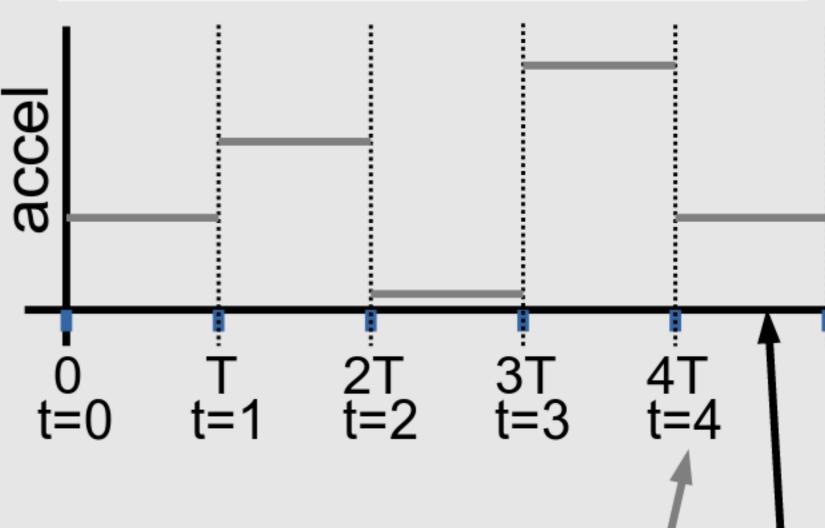
 $tT \le \tau \le (t+1)T$

- control input: acceleration
 - can change only every T secs
 - stays constant in between
- Q: can we set its **position** AND **velocity** to whatever we want (at time = multiples of T)?
- analysis approach
 - find a discrete SSR for position/vel.
 - analyse its controllability



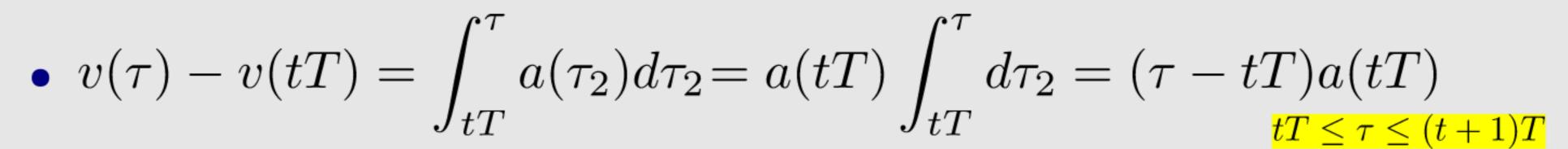


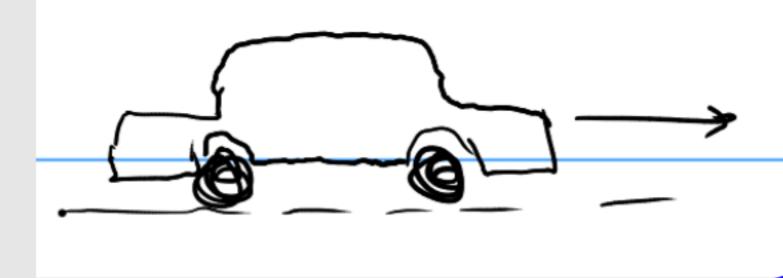


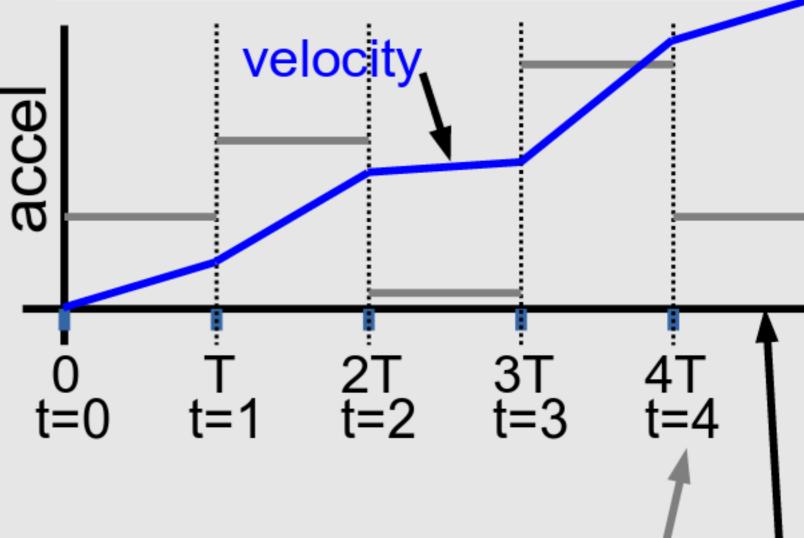


- control input: acceleration
 - can change only every T secs
 - stays constant in between
- Q: can we set its **position** AND **velocity** to whatever we want (at time = multiples of T)?
- analysis approach
 - find a discrete SSR for position/vel.
 - analyse its controllability
 - acceleration: a; velocity: v; position: x

•
$$v(\tau) = \int_0^{\tau} a(\tau_2) d\tau_2$$
, $x(\tau) = \int_0^{\tau} v(\tau_2) d\tau_2$







acceleration: a; velocity: v; position: x

•
$$v(\tau) = \int_0^{\tau} a(\tau_2) d\tau_2$$
, $x(\tau) = \int_0^{\tau} v(\tau_2) d\tau_2$

•
$$v(\tau) - v(tT) = \int_{tT}^{\tau} a(\tau_2) d\tau_2 = a(tT) \int_{tT}^{\tau} d\tau_2 = (\tau - tT) a(tT)$$

$$\frac{tT \le \tau \le (t+1)T}{t}$$

acceleration: a; velocity: v; position: x

•
$$v(\tau) = \int_0^{\tau} a(\tau_2) d\tau_2$$
, $x(\tau) = \int_0^{\tau} v(\tau_2) d\tau_2$

•
$$v(\tau) - v(tT) = \int_{tT}^{\tau} a(\tau_2) d\tau_2 = a(tT) \int_{tT}^{\tau} d\tau_2 = (\tau - tT) a(tT)$$

$$\frac{tT \le \tau \le (t+1)T}{t}$$

•
$$x(\tau) - x(tT) = \int_{tT}^{\tau} v(\tau_2) d\tau_2 = \int_{tT}^{\tau} [v(tT) + a(tT)(\tau_2 - tT)] d\tau_2$$

$$tT \le \tau \le (t+1)T$$

acceleration: a; velocity: v; position: x

•
$$v(\tau) = \int_0^{\tau} a(\tau_2) d\tau_2$$
, $x(\tau) = \int_0^{\tau} v(\tau_2) d\tau_2$

•
$$v(\tau) - v(tT) = \int_{tT}^{\tau} a(\tau_2) d\tau_2 = a(tT) \int_{tT}^{\tau} d\tau_2 = (\tau - tT) a(tT)$$

$$\frac{tT \le \tau \le (t+1)T}{t}$$

•
$$x(\tau) - x(tT) = \int_{tT}^{\tau} v(\tau_2) d\tau_2 = \int_{tT}^{\tau} \left[v(tT) + a(tT)(\tau_2 - tT) \right] d\tau_2$$

$$= (\tau - tT)v(tT) + a(tT) \frac{(\tau - tT)^2}{2} \quad tT \le \tau \le (t+1)T$$

acceleration: a; velocity: v; position: x

•
$$v(\tau) = \int_0^{\tau} a(\tau_2) d\tau_2$$
, $x(\tau) = \int_0^{\tau} v(\tau_2) d\tau_2$

•
$$v(\tau) - v(tT) = \int_{tT}^{\tau} a(\tau_2) d\tau_2 = a(tT) \int_{tT}^{\tau} d\tau_2 = (\tau - tT) a(tT)$$

• $tT \le \tau \le (t+1)T$

•
$$x(\tau) - x(tT) = \int_{tT}^{\tau} v(\tau_2) d\tau_2 = \int_{tT}^{\tau} \left[v(tT) + a(tT)(\tau_2 - tT) \right] d\tau_2$$

$$= (\tau - tT)v(tT) + a(tT) \frac{(\tau - tT)^2}{2} \quad tT \le \tau \le (t+1)T$$

• set $\tau = (t+1)T$; the above become:

•
$$x((t+1)T) = x(tT) + Tv(tT) + \frac{T^2a(tT)}{2}$$

 $v((t+1)T) = v(tT) + Ta(tT)$

•
$$x((t+1)T) = x(tT) + Tv(tT) + \frac{T^2a(tT)}{2}$$

 $v((t+1)T) = v(tT) + Ta(tT)$

•
$$x((t+1)T) = x(tT) + Tv(tT) + \frac{T^2a(tT)}{2}$$

 $v((t+1)T) = v(tT) + Ta(tT)$

S.S.R in matrix-vector form:

•
$$x((t+1)T) = x(tT) + Tv(tT) + \frac{T^2a(tT)}{2}$$

 $v((t+1)T) = v(tT) + Ta(tT)$

S.S.R in matrix-vector form:

• Controllability matrix: $\begin{bmatrix} \vec{b} \mid A\vec{b} \end{bmatrix} = \begin{bmatrix} \frac{T^2}{2} & 3\frac{T^2}{2} \\ T & T \end{bmatrix}$

•
$$x((t+1)T) = x(tT) + Tv(tT) + \frac{T^2a(tT)}{2}$$

 $v((t+1)T) = v(tT) + Ta(tT)$

S.S.R in matrix-vector form:

• Controllability matrix: $\begin{bmatrix} \vec{b} \mid A\vec{b} \end{bmatrix} = \begin{bmatrix} \frac{T^2}{2} & 3\frac{T^2}{2} \\ T & T \end{bmatrix}$

•
$$det\left(\begin{bmatrix} \frac{T^2}{2} & 3\frac{T^2}{2} \\ T & T \end{bmatrix}\right) = \frac{T^3}{2} - 3\frac{T^3}{2} = -T^3$$

•
$$x((t+1)T) = x(tT) + Tv(tT) + \frac{T^2a(tT)}{2}$$

• $v((t+1)T) = v(tT) + Ta(tT)$

S.S.R in matrix-vector form:

- Controllability matrix: $\begin{bmatrix} \vec{b} \mid A\vec{b} \end{bmatrix} = \begin{bmatrix} \frac{T^2}{2} & 3\frac{T^2}{2} \\ T & T \end{bmatrix}$
 - $det\left(\begin{bmatrix} \frac{T^2}{2} & 3\frac{T^2}{2} \\ T & T \end{bmatrix}\right) = \frac{T^3}{2} 3\frac{T^3}{2} = -T^3$ always nonzero (for T≠0)

•
$$x((t+1)T) = x(tT) + Tv(tT) + \frac{T^2a(tT)}{2}$$

• $v((t+1)T) = v(tT) + Ta(tT)$

S.S.R in matrix-vector form:

- Controllability matrix: $\begin{bmatrix} \vec{b} \mid A\vec{b} \end{bmatrix} = \begin{bmatrix} \frac{T^2}{2} & 3\frac{T^2}{2} \\ T & T \end{bmatrix}$
- A: YES, we can drive the car's position AND velocity to whatever values we want (at every τ=tT for t≥2)

• System: $\frac{d}{dt}\Delta\vec{x}(t) = A\Delta\vec{x}(t) + B\Delta\vec{u}(t)$

nxn matrix nxm matrix

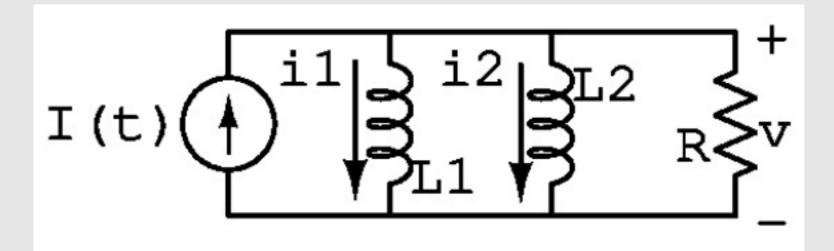
- System: $\frac{d}{dt}\Delta\vec{x}(t) = A\Delta\vec{x}(t) + B\Delta\vec{u}(t)$
- Controllability: same condition as for discrete

$$rank([B|AB|\cdots|A^{t-1}B]) = n$$

, nxn matrix nxm matrix

- System: $\frac{d}{dt}\Delta\vec{x}(t) = A\Delta\vec{x}(t) + B\Delta\vec{u}(t)$
- Controllability: same condition as for discrete

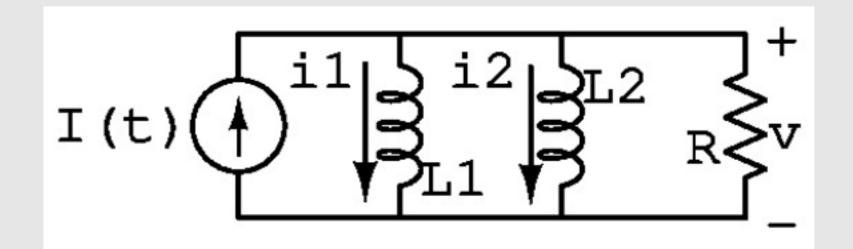
$$rank([B | AB | \cdots | A^{t-1}B]) = n$$



nxn matrix nxm matrix

- System: $\frac{d}{dt}\Delta\vec{x}(t) = A\Delta\vec{x}(t) + B\Delta\vec{u}(t)$
- Controllability: same condition as for discrete

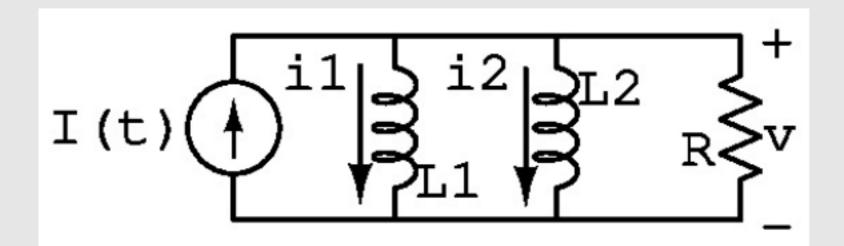
$$rank([B | AB | \cdots | A^{t-1}B]) = n$$



•
$$i_1 + i_2 + \frac{v}{R} = I_1(t)$$
, $\frac{di_1}{dt} = \frac{v}{L_1}$, $\frac{di_2}{dt} = \frac{v}{L_2}$

- System: $\frac{d}{dt}\Delta\vec{x}(t) = A\Delta\vec{x}(t) + B\Delta\vec{u}(t)$
- Controllability: same condition as for discrete

$$rank([B | AB | \cdots | A^{t-1}B]) = n$$

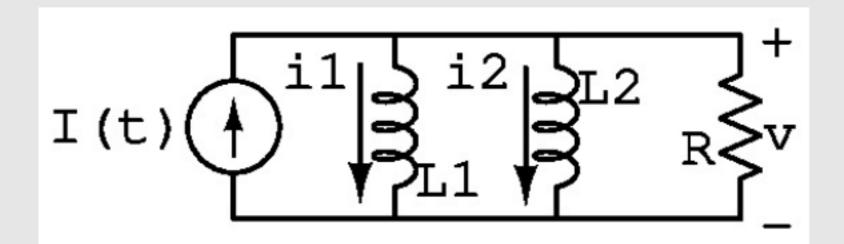


•
$$i_1 + i_2 + \frac{v}{R} = I_1(t)$$
, $\frac{di_1}{dt} = \frac{v}{L_1}$, $\frac{di_2}{dt} = \frac{v}{L_2}$

•
$$\frac{di_1}{dt} = \frac{R(I_1(t) - i_1(t) - i_2(t))}{L_1}$$
, $\frac{di_2}{dt} = \frac{R(I_1(t) - i_1(t) - i_2(t))}{L_2}$

- System: $\frac{d}{dt}\Delta\vec{x}(t) = A\Delta\vec{x}(t) + B\Delta\vec{u}(t)$
- Controllability: same condition as for discrete

$$rank([B | AB | \cdots | A^{t-1}B]) = n$$

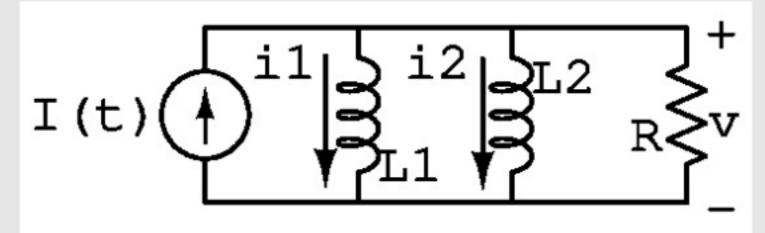


•
$$i_1 + i_2 + \frac{v}{R} = I_1(t)$$
, $\frac{di_1}{dt} = \frac{v}{L_1}$, $\frac{di_2}{dt} = \frac{v}{L_2}$

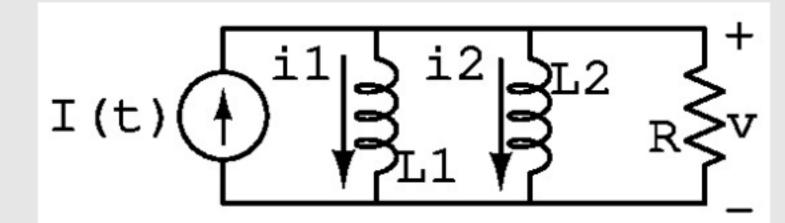
•
$$\frac{di_1}{dt} = \frac{R(I_1(t) - i_1(t) - i_2(t))}{L_1}$$
, $\frac{di_2}{dt} = \frac{R(I_1(t) - i_1(t) - i_2(t))}{L_2}$

•
$$\frac{d}{dt} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} = \begin{bmatrix} -\frac{R}{L_1} & -\frac{R}{L_1} \\ -\frac{R}{L_2} & -\frac{R}{L_2} \end{bmatrix} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} + \begin{bmatrix} \frac{R}{L_1} \\ \frac{R}{L_2} \end{bmatrix} I(t)$$

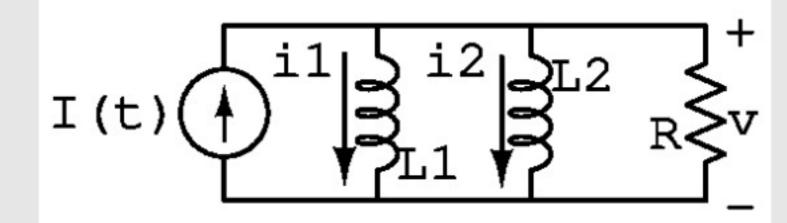
$$\bullet \frac{d}{dt} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} = \begin{bmatrix} -\frac{R}{L_1} & -\frac{R}{L_2} \\ -\frac{R}{L_2} & -\frac{R}{L_2} \end{bmatrix} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} + \begin{bmatrix} \frac{R}{L_1} \\ \frac{R}{L_2} \end{bmatrix} I(t)$$



$$\bullet \frac{d}{dt} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} = \begin{bmatrix} -\frac{R}{L_1} & -\frac{R}{L_1} \\ -\frac{R}{L_2} & -\frac{R}{L_2} \end{bmatrix} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} + \begin{bmatrix} \frac{R}{L_1} \\ \frac{R}{L_2} \end{bmatrix} I(t)$$



$$\bullet \frac{d}{dt} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} = \begin{bmatrix} -\frac{R}{L_1} & -\frac{R}{L_1} \\ -\frac{R}{L_2} & -\frac{R}{L_2} \end{bmatrix} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} + \begin{bmatrix} \frac{R}{L_1} \\ \frac{R}{L_2} \end{bmatrix} I(t)$$



•
$$\begin{bmatrix} \vec{b} \mid A\vec{b} \end{bmatrix} = \begin{bmatrix} \frac{R}{L_1} & -\frac{R^2}{L_1^2} - \frac{R^2}{L_1 L_2} \\ \frac{R}{L_2} & -\frac{R^2}{L_1 L_2} - \frac{R^2}{L_2^2} \end{bmatrix} = \begin{bmatrix} 1 & -\frac{R}{L_1} - \frac{R}{L_2} \\ 1 & -\frac{R}{L_1} - \frac{R}{L_2} \end{bmatrix} \begin{bmatrix} \frac{R}{L_1} \\ 0 & \frac{R}{L_2} \end{bmatrix}$$
rank = 1 < n=2

$$\bullet \frac{d}{dt} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} = \begin{bmatrix} -\frac{R}{L_1} & -\frac{R}{L_1} \\ -\frac{R}{L_2} & -\frac{R}{L_2} \end{bmatrix} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} + \begin{bmatrix} \frac{R}{L_1} \\ \frac{R}{L_2} \end{bmatrix} I(t)$$

not controllable

•
$$\begin{bmatrix} \vec{b} \mid A\vec{b} \end{bmatrix} = \begin{bmatrix} \frac{R}{L_1} & -\frac{R^2}{L_1^2} - \frac{R^2}{L_1 L_2} \\ \frac{R}{L_2} & -\frac{R^2}{L_1 L_2} - \frac{R^2}{L_2^2} \end{bmatrix} = \begin{bmatrix} 1 & -\frac{R}{L_1} - \frac{R}{L_2} \\ 1 & -\frac{R}{L_1} - \frac{R}{L_2} \end{bmatrix} \begin{bmatrix} \frac{R}{L_1} \\ 0 & \frac{R}{L_2} \end{bmatrix}$$
rank = 1 < n=2

$$\bullet \frac{d}{dt} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} = \begin{bmatrix} -\frac{R}{L_1} & -\frac{R}{L_1} \\ -\frac{R}{L_2} & -\frac{R}{L_2} \end{bmatrix} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} + \begin{bmatrix} \frac{R}{L_1} \\ \frac{R}{L_2} \end{bmatrix} I(t)$$

not controllable

- Intuitive/"physical" way to see it:
 - i₁ and i₂ both directly determined by the same v(t)

$$\bullet \frac{d}{dt} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} = \begin{bmatrix} -\frac{R}{L_1} & -\frac{R}{L_1} \\ -\frac{R}{L_2} & -\frac{R}{L_2} \end{bmatrix} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} + \begin{bmatrix} \frac{R}{L_1} \\ \frac{R}{L_2} \end{bmatrix} I(t)$$

not controllable

Controllability matrix:

• Intuitive/"physical" way to see it:

rank = 1 < n=2

i₁ and i₂ both directly determined by the same v(t)

$$ullet rac{di_1}{dt} = rac{v}{L_1}, \; rac{di_2}{dt} = rac{v}{L_2}$$

•
$$\frac{d}{dt}(L_1i_1(t) - L_2i_2(t)) = 0 \rightarrow L_1i_1(t) - L_2i_2(t) = \text{constant}$$

$$\bullet \frac{d}{dt} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} = \begin{bmatrix} -\frac{R}{L_1} & -\frac{R}{L_1} \\ -\frac{R}{L_2} & -\frac{R}{L_2} \end{bmatrix} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} + \begin{bmatrix} \frac{R}{L_1} \\ \frac{R}{L_2} \end{bmatrix} I(t)$$

not controllable

Controllability matrix:

• Intuitive/"physical" way to see it:

rank = 1 < n=2

i₁ and i₂ both directly determined by the same v(t)

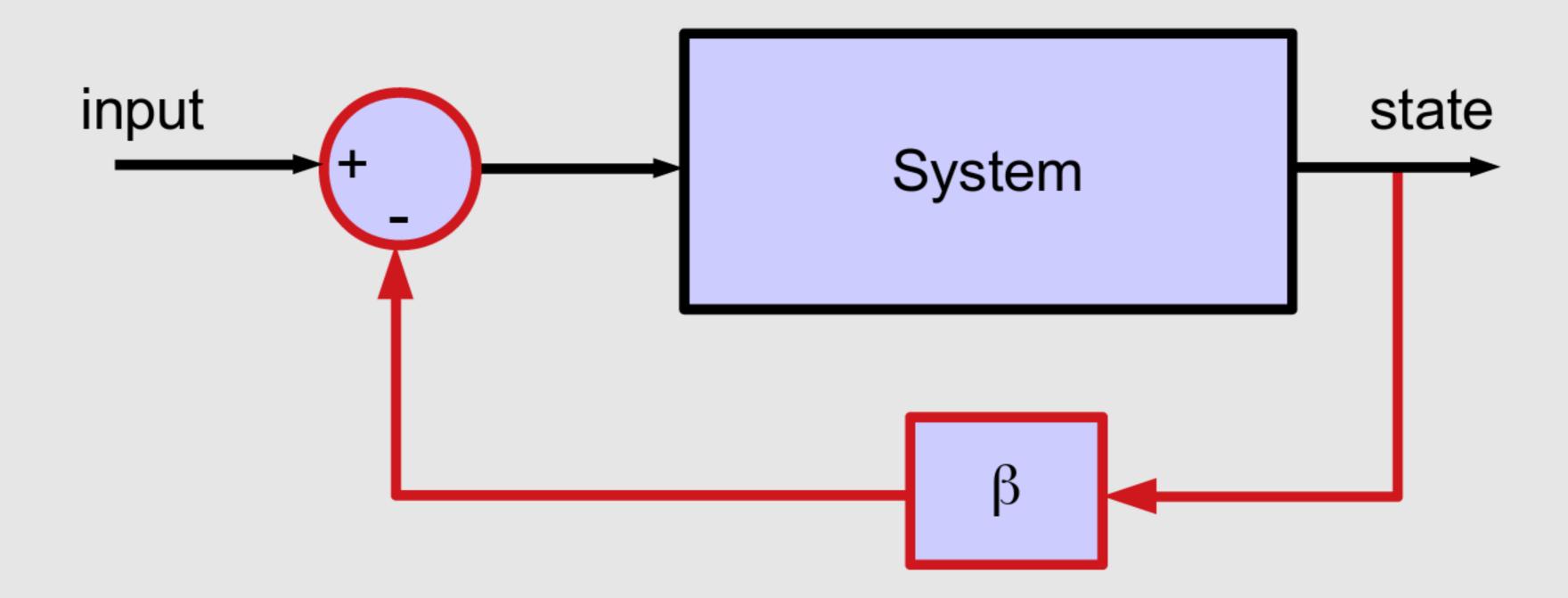
•
$$\frac{di_1}{dt} = \frac{v}{L_1}$$
, $\frac{di_2}{dt} = \frac{v}{L_2}$ cannot be set independently
• $\frac{d}{dt}(L_1i_1(t) - L_2i_2(t)) = 0$ $\rightarrow L_1i_1(t) - L_2i_2(t) = \text{constant}$

Feedback

- The concept of feedback
 - add/subtract some of the output/state from the input

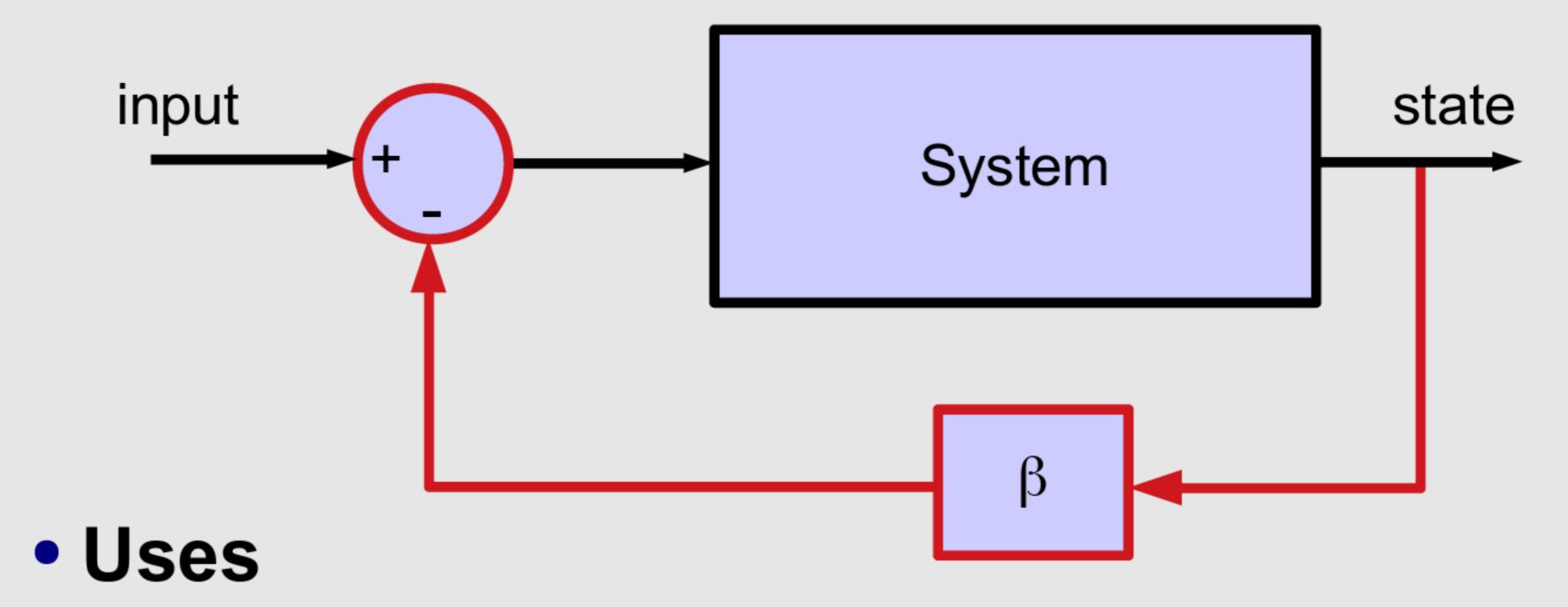
Feedback

- The concept of feedback
 - add/subtract some of the output/state from the input



Feedback

- The concept of feedback
 - add/subtract some of the output/state from the input



- making systems less sensitive to undesired noise and uncertainties (ALWAYS PRESENT in practical systems)
- stabilizing unstable systems (if they are controllable)
 - thus making them practically usable

The Problem with Open Loop Control

- "open loop" means: no feedback
 - "closed loop" means a system with feedback

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$

* dropping Δ from Δx and Δu (for convenience)

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$ unstable

* dropping Δ from Δx and Δu (for convenience)

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$ unstable
 - but controllable (why?)
 * dropping ∆ from ∆x and ∆u (for convenience)

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$ unstable
 - but controllable (why?)
 * dropping ∆ from ∆x and ∆u (for convenience)
 - goal: make x(t=10) = 1, starting with I.C. x(0) = 1

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$ unstable
 - but controllable (why?)
 * dropping ∆ from ∆x and ∆u (for convenience)
 - goal: make x(t=10) = 1, starting with I.C. x(0) = 1

•
$$x(10) = 1 \cdot e^{10} + \int_0^{10} e^{10-\tau} u(\tau) d\tau$$

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$ unstable
 - but controllable (why?)
 * dropping ∆ from ∆x and ∆u (for convenience)
 - goal: make x(t=10) = 1, starting with I.C. x(0) = 1

•
$$x(10)=1\cdot e^{10}+\int_0^{10}e^{10-\tau}u(\tau)\,d\tau$$

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$ unstable
 - but controllable (why?)
 * dropping ∆ from ∆x and ∆u (for convenience)
 - goal: make x(t=10) = 1, starting with I.C. x(0) = 1

•
$$x(10) = 1 \cdot e^{10} + \int_0^{10} e^{10-\tau} u(\tau) \, d\tau = 1 \cdot e^{10} + u(e^{10} - 1)$$

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$ unstable
 - but controllable (why?)
 * dropping ∆ from ∆x and ∆u (for convenience)
 - goal: make x(t=10) = 1, starting with I.C. x(0) = 1

•
$$x(10) = 1 \cdot e^{10} + \int_0^{10} e^{10-\tau} u(\tau) \, d\tau = 1 \cdot e^{10} + u(e^{10} - 1)$$

• want: $1 = x(10) = 1 \cdot e^{10} + u(e^{10} - 1)$

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$ unstable
 - but controllable (why?)
 * dropping ∆ from ∆x and ∆u (for convenience)
 - goal: make x(t=10) = 1, starting with I.C. x(0) = 1

•
$$x(10)=1\cdot e^{10}+\int_0^{10}e^{10-\tau}u(\tau)\,d\tau=1\cdot e^{10}+u(e^{10}-1)$$
 • want: $1=x(10)=1\cdot e^{10}+u(e^{10}-1)$

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$ unstable
 - but controllable (why?)
 * dropping ∆ from ∆x and ∆u (for convenience)
 - goal: make x(t=10) = 1, starting with I.C. x(0) = 1

•
$$x(10) = 1 \cdot e^{10} + \int_0^{10} e^{10-\tau} u(\tau) \, d\tau = 1 \cdot e^{10} + u(e^{10} - 1)$$

- want: $1 = x(10) = 1 \cdot e^{10} + u(e^{10} 1)$
- suppose there's a 0.1% error in the IC: 1 → 1.001

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$ unstable
 - but controllable (why?)
 * dropping ∆ from ∆x and ∆u (for convenience)
 - goal: make x(t=10) = 1, starting with I.C. x(0) = 1

•
$$x(10) = 1 \cdot e^{10} + \int_0^{10} e^{10-\tau} u(\tau) \, d\tau = 1 \cdot e^{10} + u(e^{10}-1)$$

- want: $1 = x(10) = 1 \cdot e^{10} + u(e^{10} 1)$
- suppose there's a 0.1% error in the IC: 1 → 1.001
- new $x(10) = 1.001 \cdot e^{10} + u(e^{10} 1) = 1 + 10^{-3}e^{10}$

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$ unstable
 - but controllable (why?)
 * dropping ∆ from ∆x and ∆u (for convenience)
 - goal: make x(t=10) = 1, starting with I.C. x(0) = 1

•
$$x(10) = 1 \cdot e^{10} + \int_0^{10} e^{10-\tau} u(\tau) \, d\tau = 1 \cdot e^{10} + u(e^{10}-1)$$

- want: $1 = x(10) = 1 \cdot e^{10} + u(e^{10} 1)$
- suppose there's a 0.1% error in the IC: $1 \rightarrow 1.001$
- new $x(10) = 1.001 \cdot e^{10} + u(e^{10} 1) = 1 + 10^{-3}e^{10}$

 $e^{10} \simeq 22026$

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$ unstable
 - but controllable (why?)
 * dropping ∆ from ∆x and ∆u (for convenience)
 - goal: make x(t=10) = 1, starting with I.C. x(0) = 1

$$\bullet \ x(10) = 1 \cdot e^{10} + \int_0^{10} e^{10 - \tau} u(\tau) \, d\tau = 1 \cdot e^{10} + u(e^{10} - 1)$$

- want: $1 = x(10) = 1 \cdot e^{10} + u(e^{10} 1)$
- suppose there's a 0.1% error in the IC: $1 \rightarrow 1.001$
- new $x(10) = 1.001 \cdot e^{10} + u(e^{10} 1) = 1 + 10^{-3}e^{10} 22$

 $e^{10} \simeq 22026$

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$ unstable
 - but controllable (why?)
 * dropping ∆ from ∆x and ∆u (for convenience)
 - goal: make x(t=10) = 1, starting with I.C. x(0) = 1

$$\bullet \ x(10) = 1 \cdot e^{10} + \int_0^{10} e^{10 - \tau} u(\tau) \, d\tau = 1 \cdot e^{10} + u(e^{10} - 1)$$

- want: $1 = x(10) = 1 \cdot e^{10} + u(e^{10} 1)$
- suppose there's a 0.1% error in the IC: $1 \rightarrow 1.001$
- new $x(10) = 1.001 \cdot e^{10} + u(e^{10} 1) = 1 + 10^{-3}e^{10} 22$
- 0.1% error in IC \to 2200% error in x(10) $e^{10} \simeq 22026$

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$ unstable
 - but controllable (why?)
 * dropping ∆ from ∆x and ∆u (for convenience)
 - goal: make x(t=10) = 1, starting with I.C. x(0) = 1

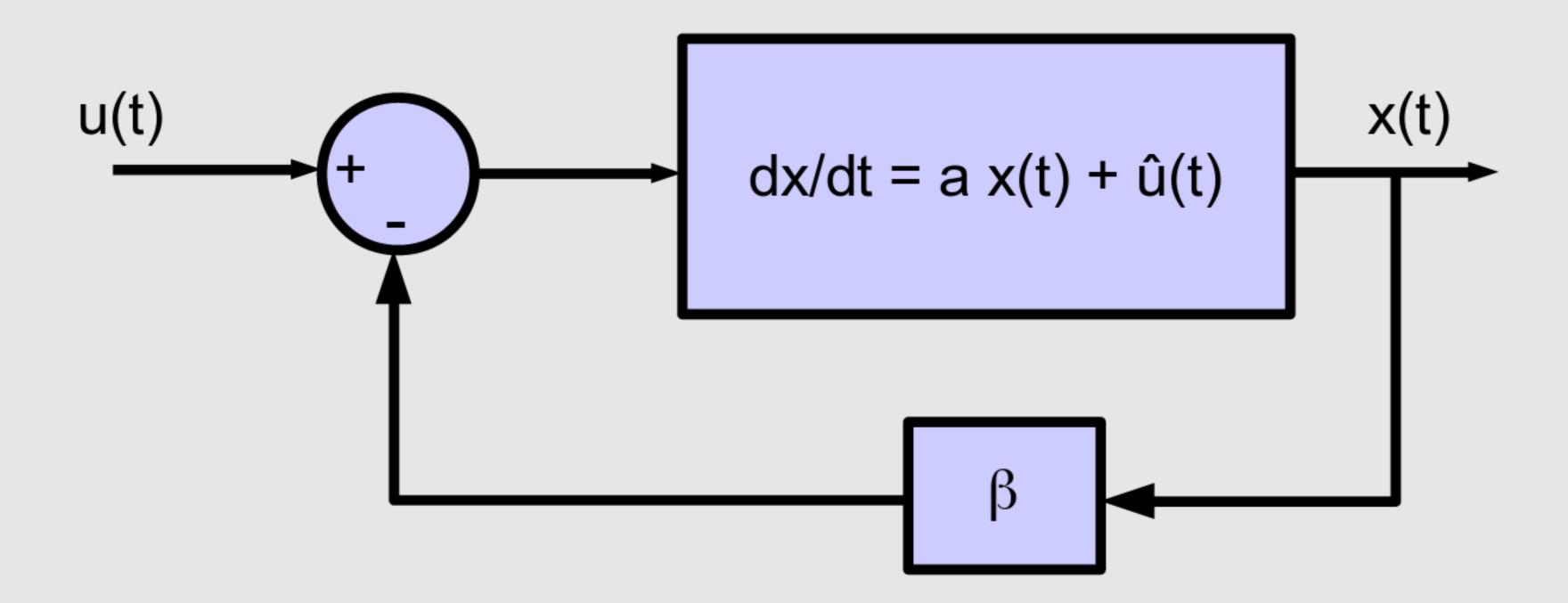
•
$$x(10) = 1 \cdot e^{10} + \int_0^{10} e^{10-\tau} u(\tau) \, d\tau = 1 \cdot e^{10} + u(e^{10}-1)$$

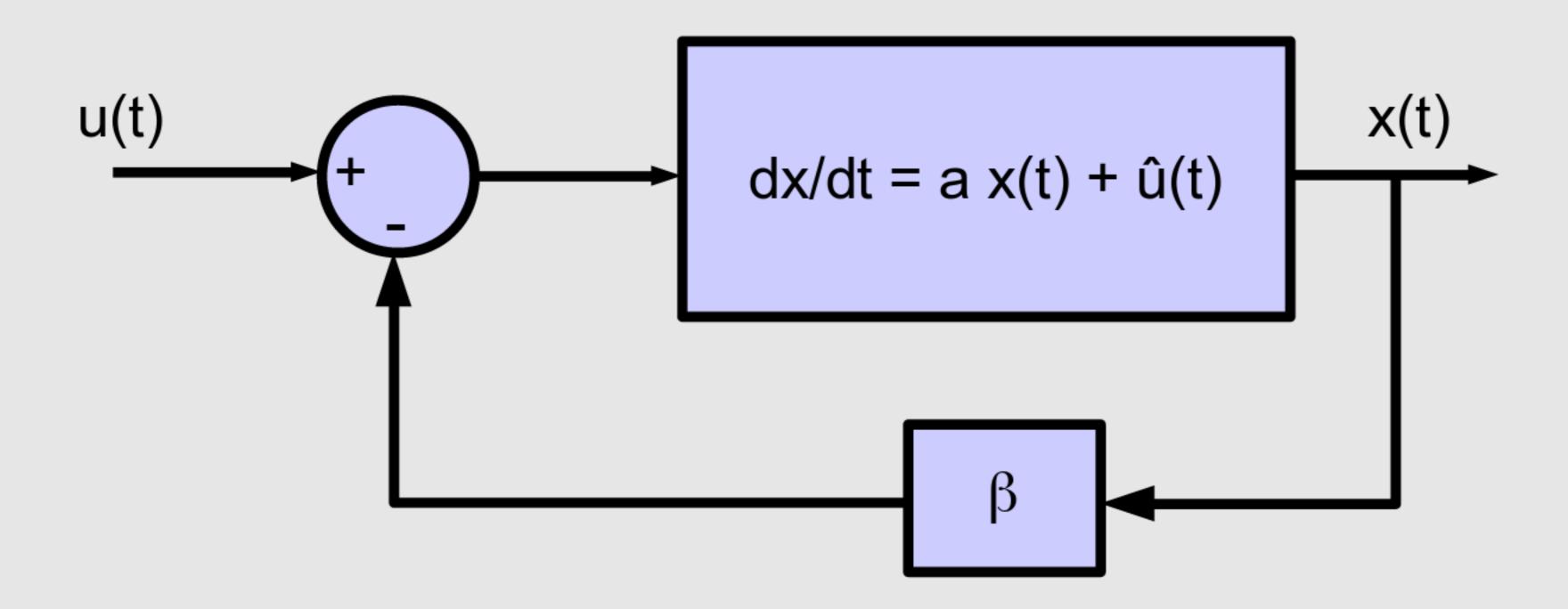
- want: $1 = x(10) = 1 \cdot e^{10} + u(e^{10} 1)$
- suppose there's a 0.1% error in the IC: $1 \rightarrow 1.001$
- new $x(10) = 1.001 \cdot e^{10} + u(e^{10} 1) = 1 + 10^{-3}e^{10} 22$
- 0.1% error in IC \to 2200% error in x(10) $e^{10} \simeq 22026$

- "open loop" means: no feedback
 - "closed loop" means a system with feedback
- example: $\dot{x}\dot{x}(t) = ax(t) + u(t), \quad a = 1 > 0$ unstable
 - but controllable (why?)
 * dropping ∆ from ∆x and ∆u (for convenience)
 - goal: make x(t=10) = 1, starting with I.C. x(0) = 1

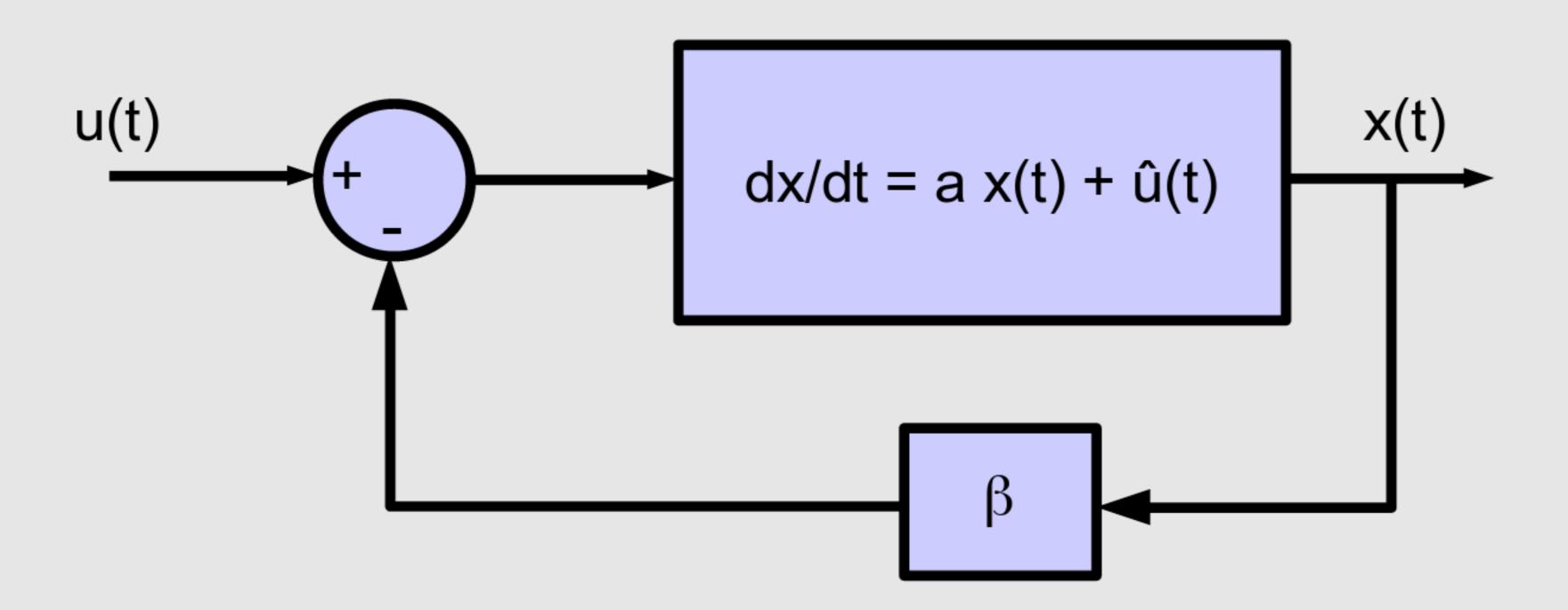
$$\bullet \ x(10) = 1 \cdot e^{10} + \int_0^{10} e^{10 - \tau} u(\tau) \, d\tau = 1 \cdot e^{10} + u(e^{10} - 1)$$

- want: $1 = x(10) = 1 \cdot e^{10} + u(e^{10} 1)$
- suppose there's a 0.1% error in the IC: $1 \rightarrow 1.001$
- new $x(10) = 1.001 \cdot e^{10} + u(e^{10} 1) = 1 + 10^{-3}e^{10} 22$
- 0.1% error in IC \to 2200% error in x(10) $e^{10} \sim 22026$
- How will this change if a = -1?

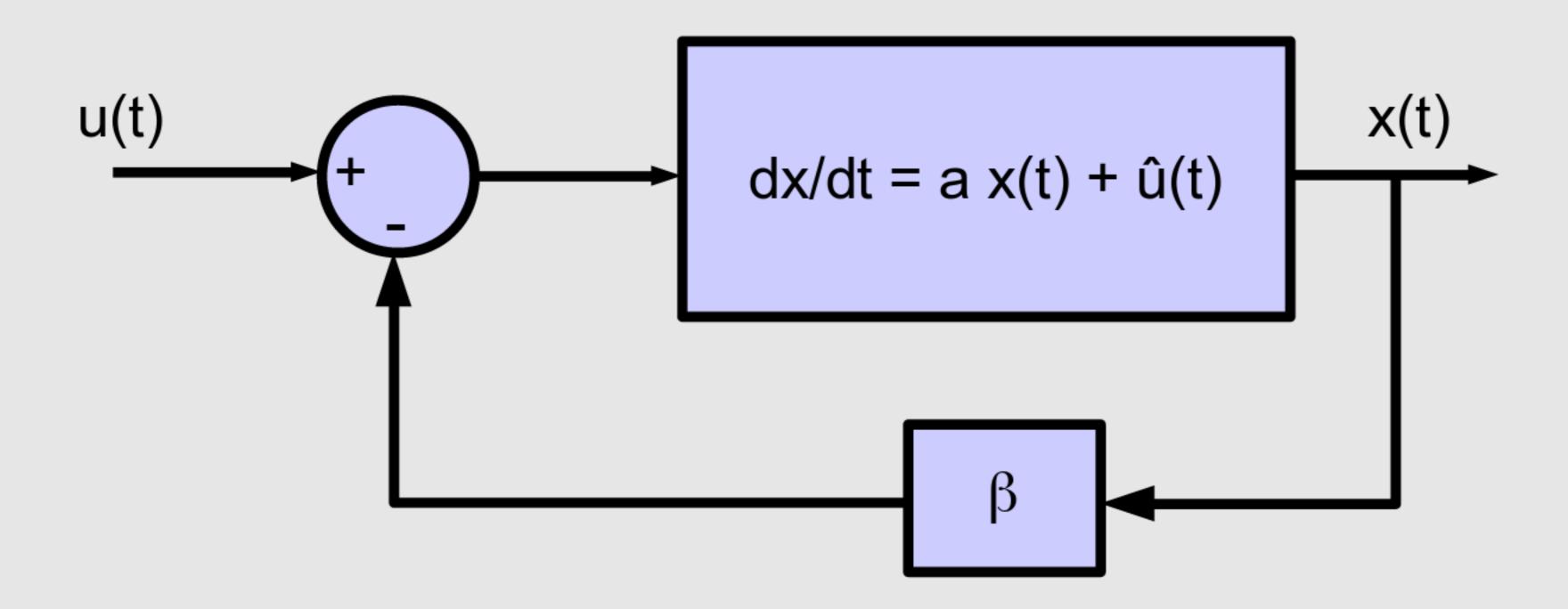




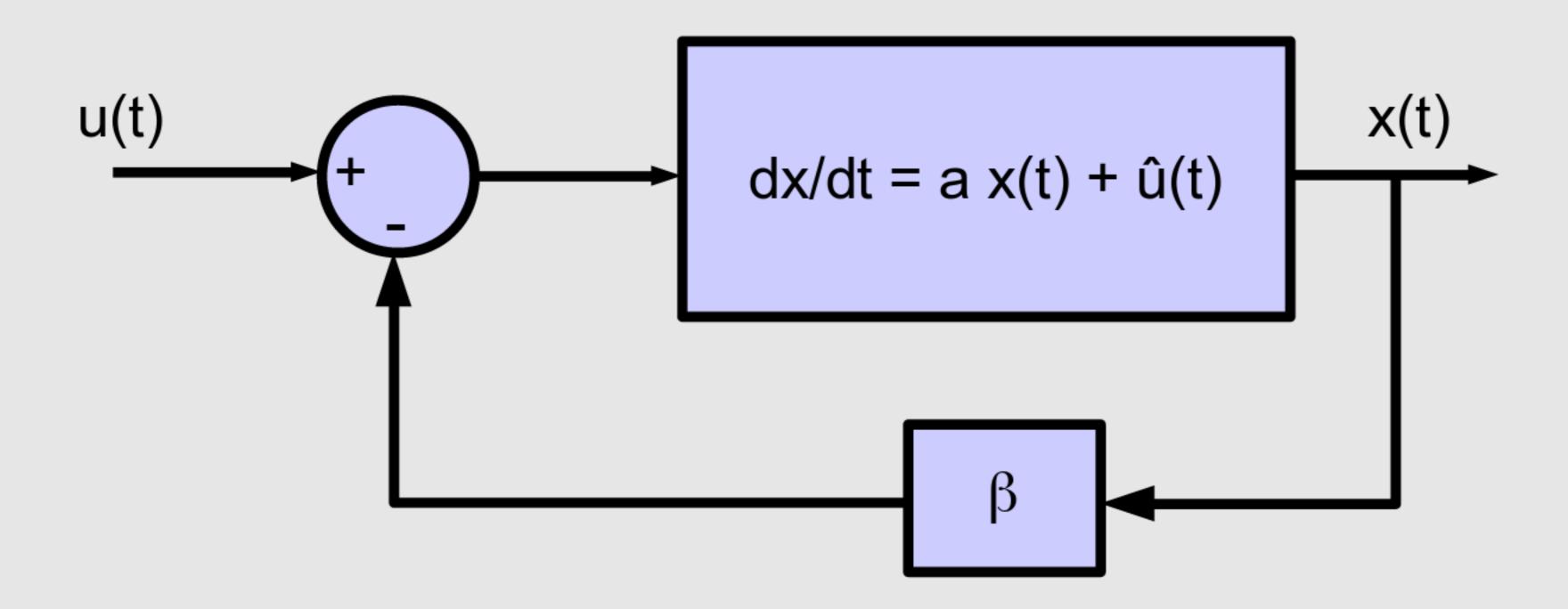
• apply feedback: $\hat{u}(t) \mapsto u(t) - \beta x(t)$



- apply feedback: $\hat{u}(t) \mapsto u(t) \beta x(t)$
 - $\dot{x}(t) = ax(t) + \hat{u}(t) \mapsto \dot{x}(t) = ax(t) + u(t) \beta x(t), \quad a = 1 > 0$



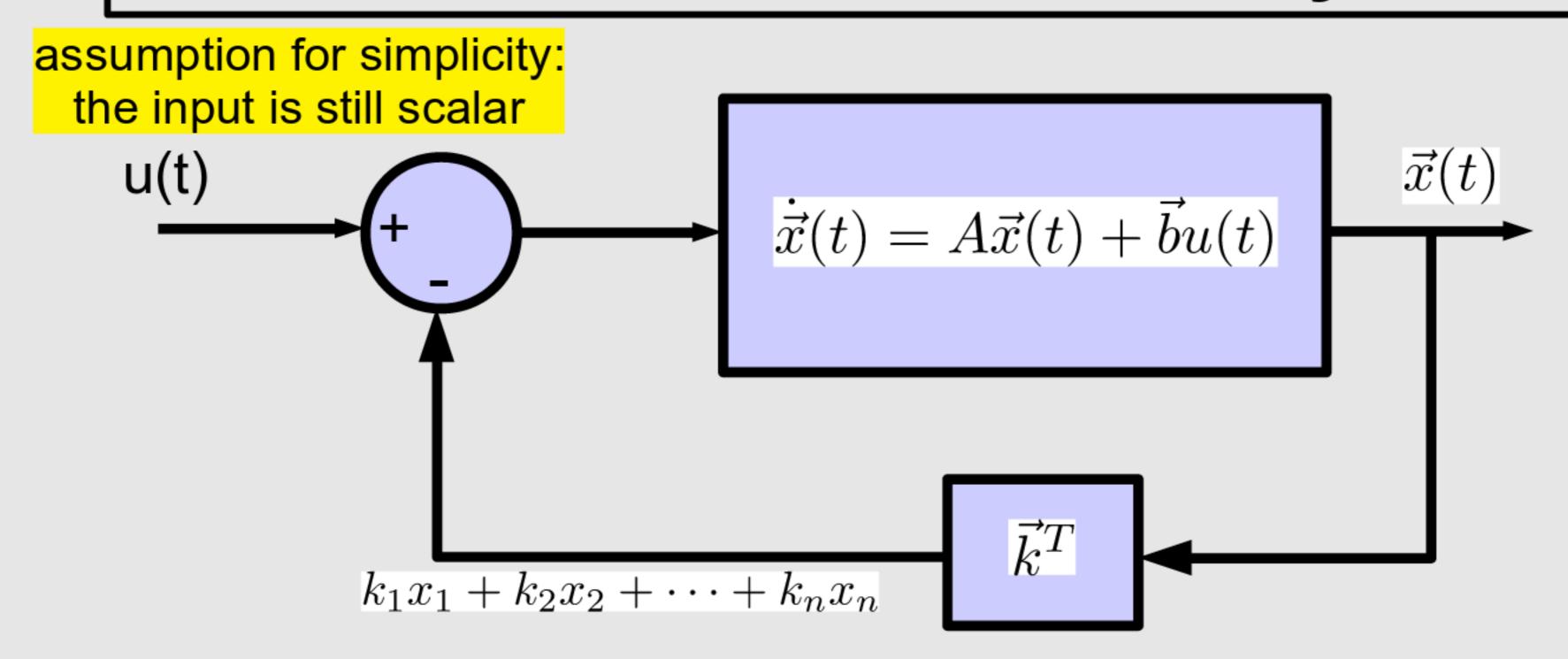
- apply feedback: $\hat{u}(t) \mapsto u(t) \beta x(t)$
 - $\dot{x}(t) = ax(t) + \hat{u}(t) \mapsto \dot{x}(t) = ax(t) + u(t) \beta x(t), \quad a = 1 > 0$

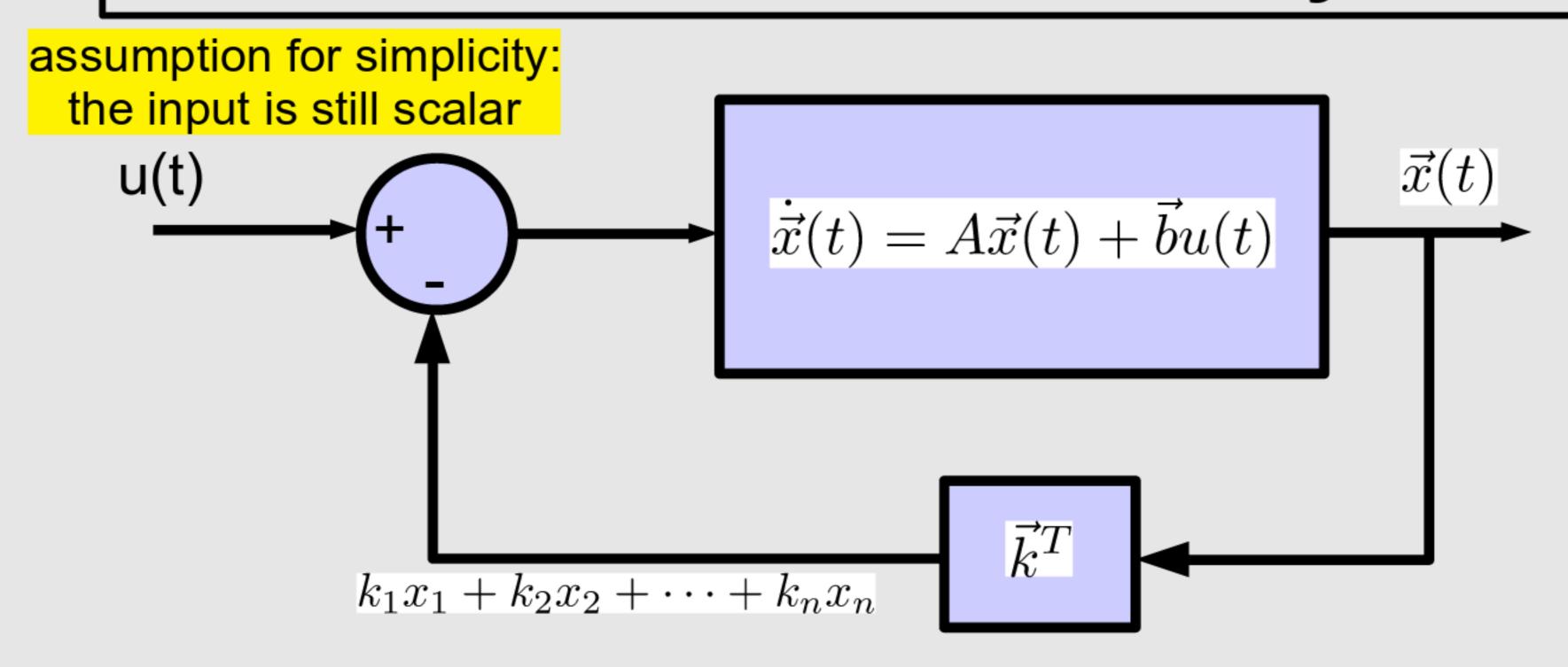


- apply feedback: $\hat{u}(t) \mapsto u(t) \beta x(t)$
 - $\dot{x}(t) = ax(t) + \hat{u}(t) \mapsto \dot{x}(t) = ax(t) + u(t) \beta x(t), \quad a = 1 > 0$
- $\dot{x}(t) = (a \beta)x(t) + u(t), \quad a = 1 > 0$

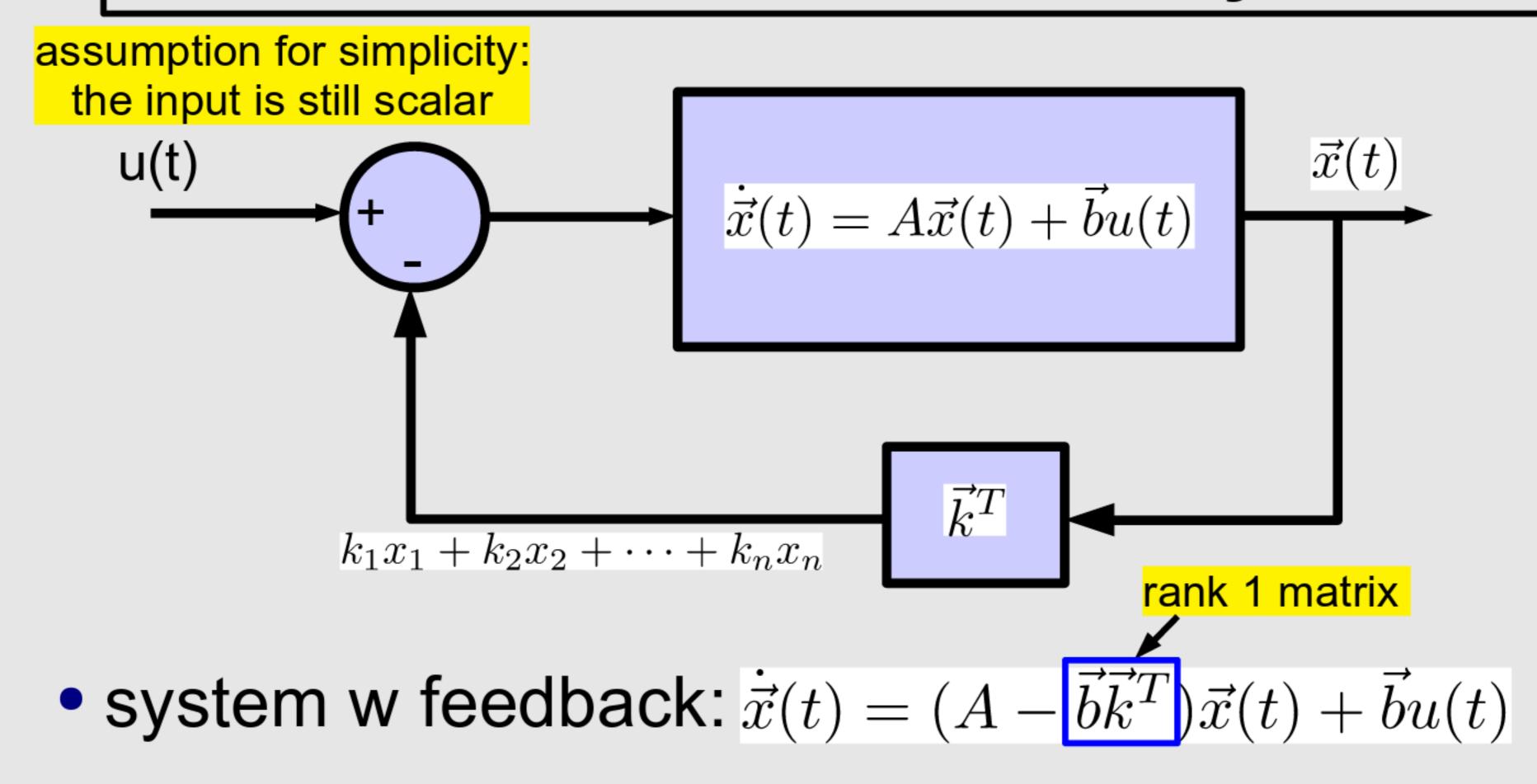


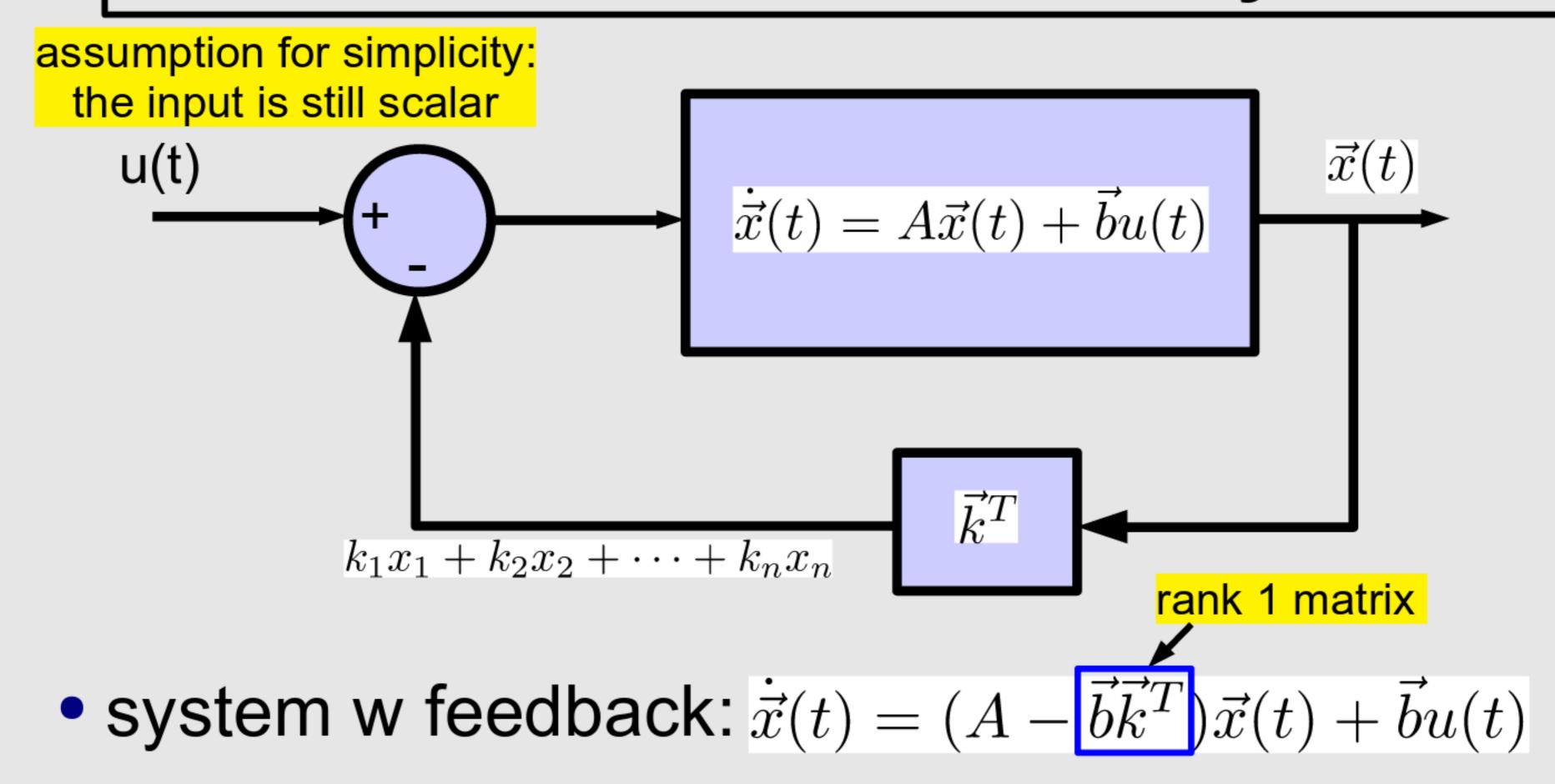
- apply feedback: $\hat{u}(t) \mapsto u(t) \beta x(t)$
 - $\dot{x}(t) = ax(t) + \hat{u}(t) \mapsto \dot{x}(t) = ax(t) + u(t) \beta x(t), \quad a = 1 > 0$
- $\dot{x}(t) = (a-\beta)x(t) + u(t), \quad a=1>0$ choose $\beta>a \rightarrow$ system is stabilized



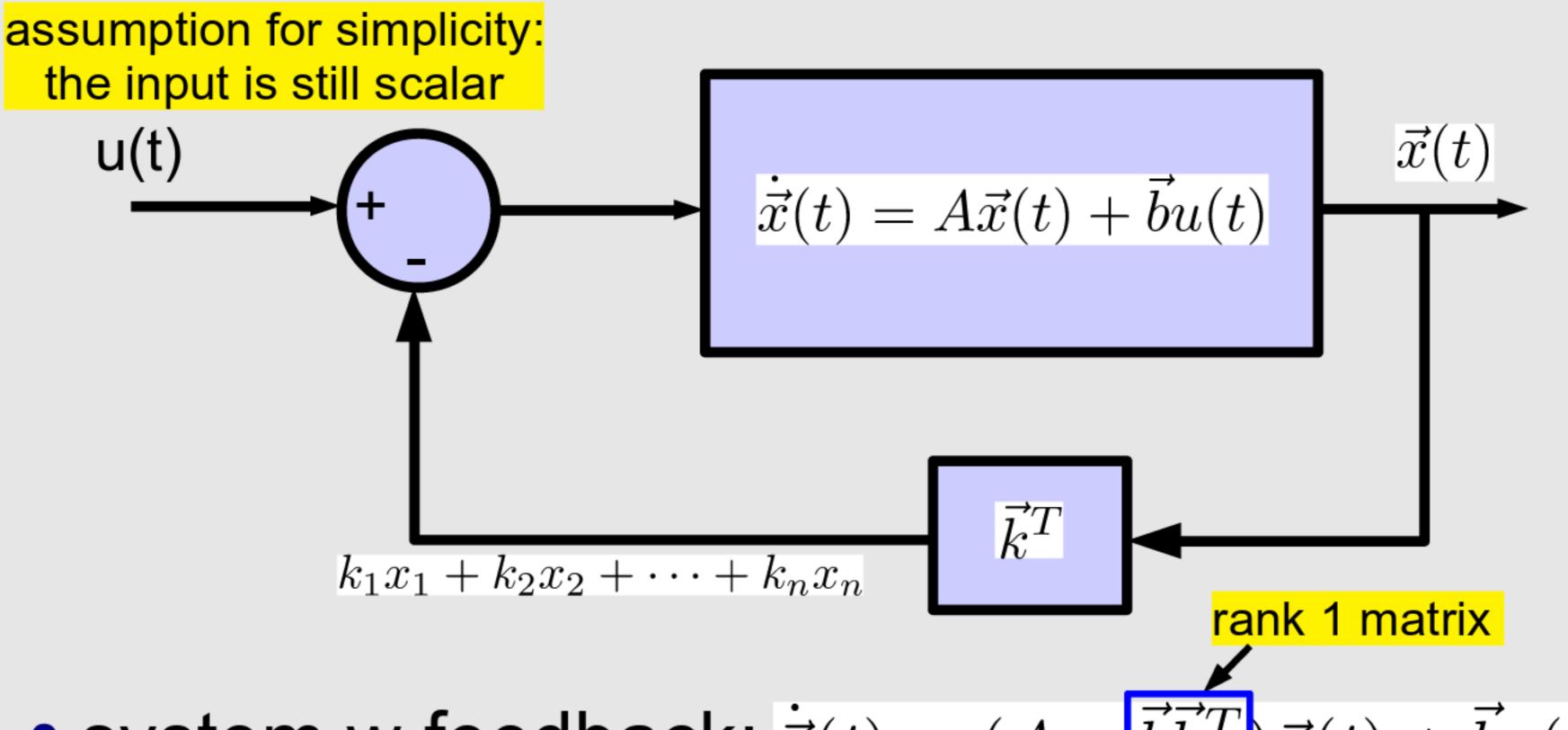


• system w feedback: $\dot{\vec{x}}(t) = (A - \vec{b}\vec{k}^T)\vec{x}(t) + \vec{b}u(t)$

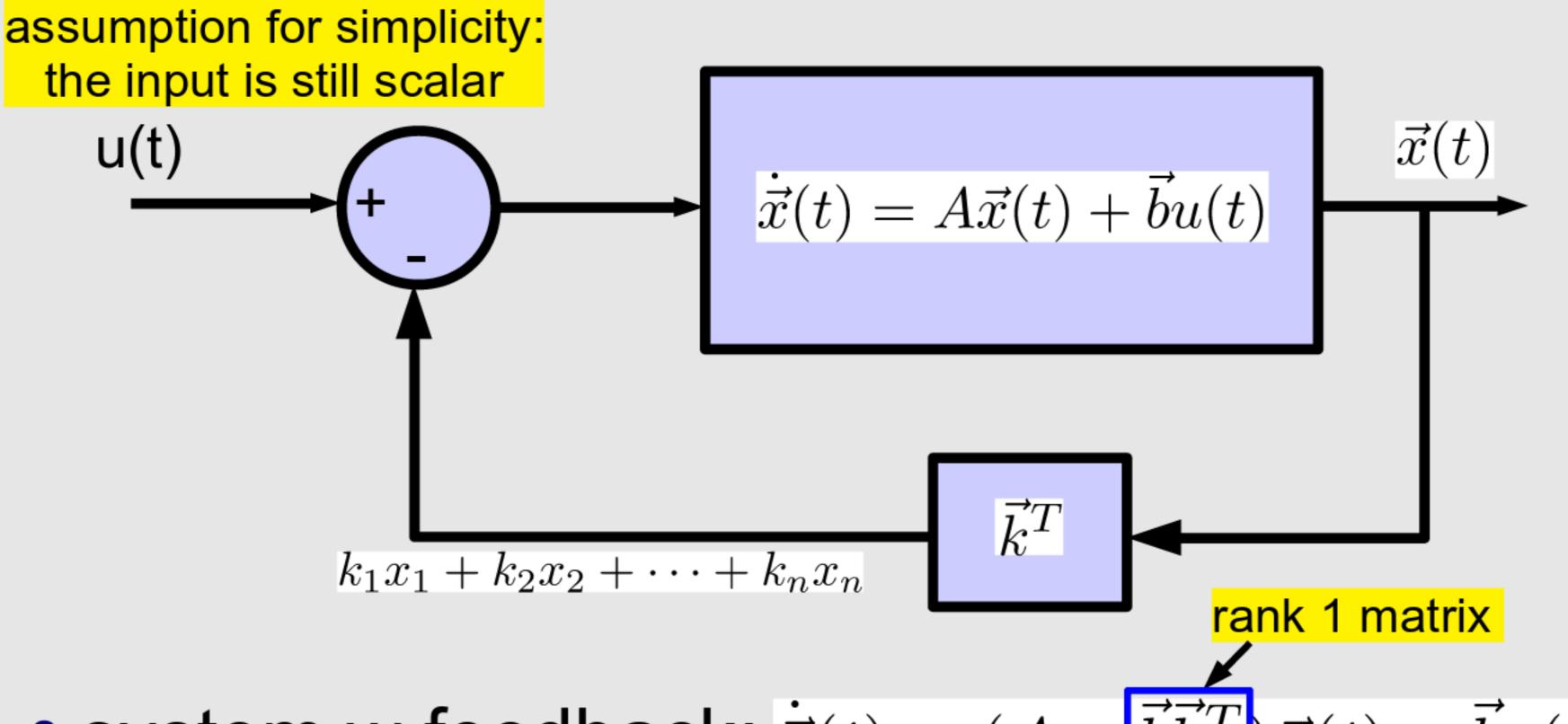




• stability governed by eigenvalues of $A-ec{b}ec{k}^T$



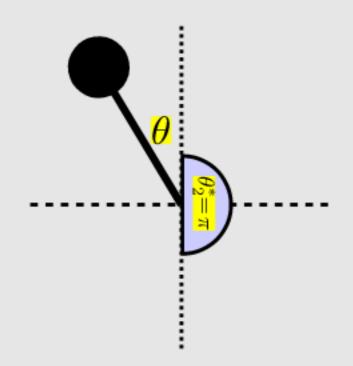
- system w feedback: $\dot{\vec{x}}(t) = (A \vec{b}\vec{k}^T)\vec{x}(t) + \vec{b}u(t)$
 - stability governed by eigenvalues of $A \vec{b} \vec{k}^T$
- Q: how do the e.values of A change due to



- system w feedback: $\dot{\vec{x}}(t) = (A \vec{b}\vec{k}^T)\vec{x}(t) + \vec{b}u(t)$
 - stability governed by eigenvalues of $A \vec{b} \vec{k}^T$
- Q: how do the e.values of A change due to
 - very difficult to figure out analytically!
 - can do simple examples; otherwise, numerically

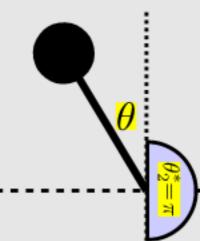
Example: stabilizing an inverted pendulum using feedback

• i.p.:
$$\frac{d}{dt} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ +\frac{g}{l} & -\frac{k}{m} \end{bmatrix} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml} \end{bmatrix} u(t)$$

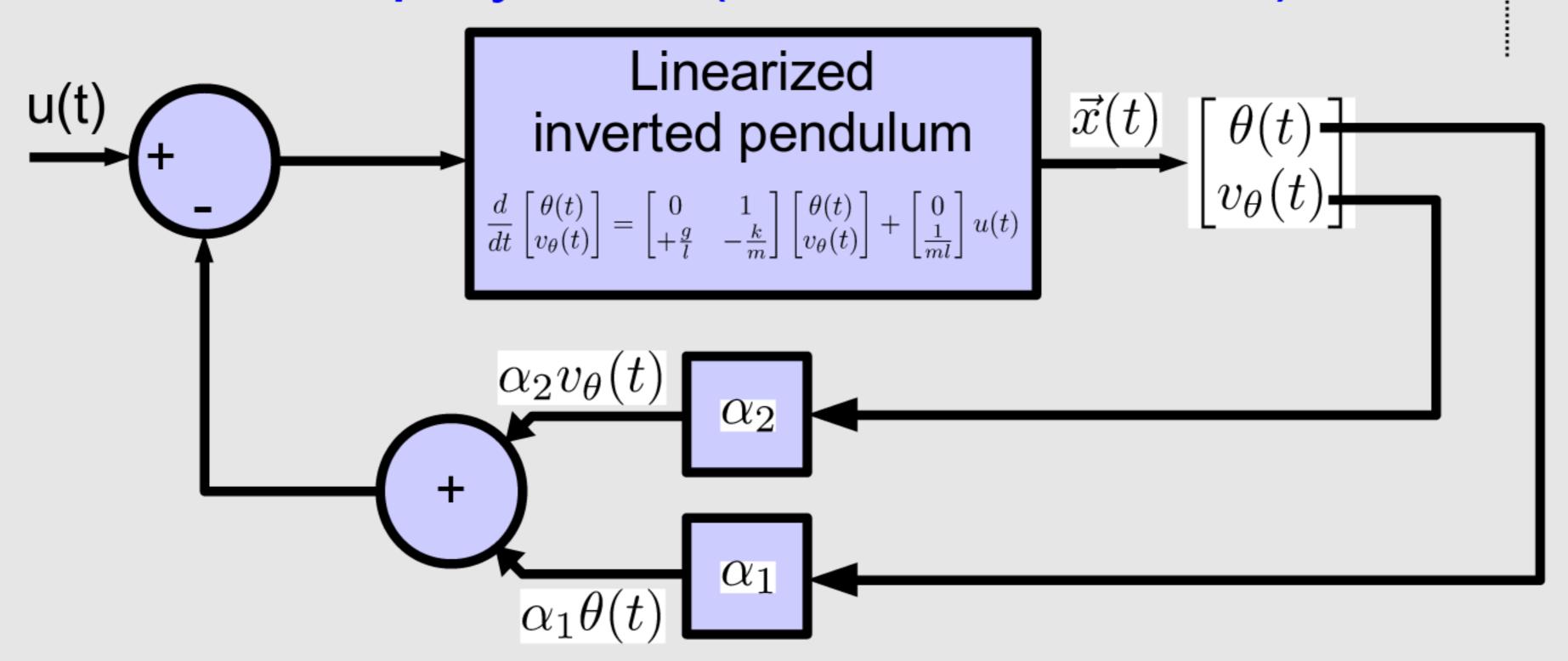


Example: stabilizing an inverted pendulum using feedback

• i.p.:
$$\frac{d}{dt} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ +\frac{g}{l} & -\frac{k}{m} \end{bmatrix} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml} \end{bmatrix} u(t)$$

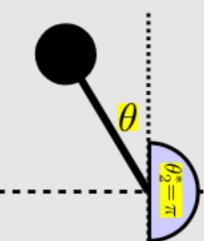


Closed loop system (ie, with feedback)

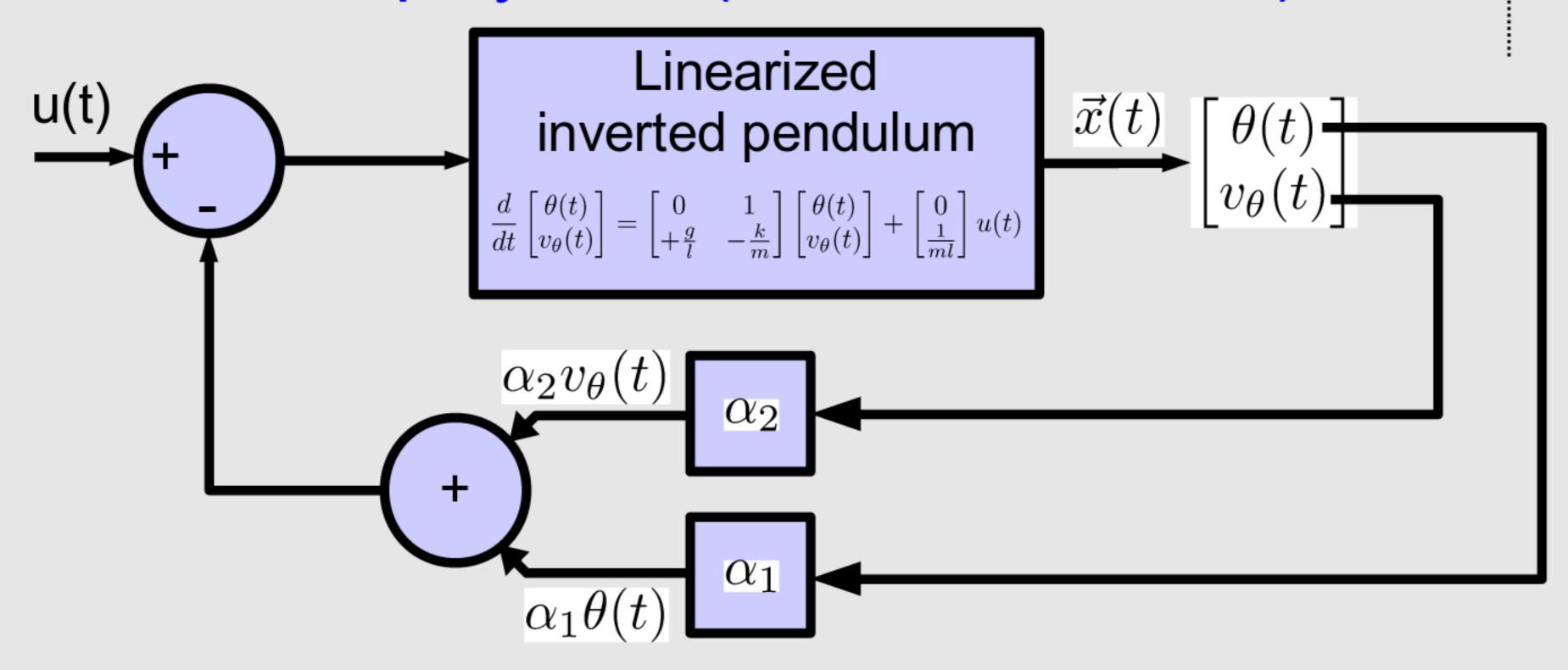


Example: stabilizing an inverted pendulum using feedback

• i.p.:
$$\frac{d}{dt} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ +\frac{g}{l} & -\frac{k}{m} \end{bmatrix} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml} \end{bmatrix} u(t)$$



Closed loop system (ie, with feedback)



•
$$\frac{d}{dt} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{mg - \alpha_1}{ml} & \frac{-kl - \alpha_2}{ml} \end{bmatrix} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml} \end{bmatrix} u(t)$$

• I.P. w F.:
$$\frac{d}{dt} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{mg - \alpha_1}{ml} & \frac{-kl - \alpha_2}{ml} \end{bmatrix} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml} \end{bmatrix} u(t)$$

- I.P. w F.: $\frac{d}{dt} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{mg \alpha_1}{ml} & \frac{-kl \alpha_2}{ml} \end{bmatrix} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml} \end{bmatrix} u(t)$ eigenvalues of this determine stability

- I.P. w F.: $\frac{d}{dt} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{mg \alpha_1}{ml} & \frac{-kl \alpha_2}{ml} \end{bmatrix} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml} \end{bmatrix} u(t)$ eigenvalues of this determine stability

$$\rightarrow \det \left(\begin{bmatrix} \frac{-\lambda}{mg - \alpha_1} & 1\\ \frac{mg - \alpha_1}{ml} & \frac{-kl - \alpha_2 - ml\lambda}{ml} \end{bmatrix} \right) = 0$$

- I.P. w F.: $\frac{d}{dt} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{mg \alpha_1}{ml} & \frac{-kl \alpha_2}{ml} \end{bmatrix} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml} \end{bmatrix} u(t)$
 - eigenvalues of this determine stability

$$\rightarrow \det\left(\begin{bmatrix} \frac{-\lambda}{mg - \alpha_1} & 1\\ \frac{mg - \alpha_1}{ml} & \frac{-kl - \alpha_2 - ml\lambda}{ml} \end{bmatrix}\right) = 0 \Rightarrow ml\lambda^2 + (kl + \alpha_2)\lambda - (mg - \alpha_1) = 0$$

- I.P. w F.: $\frac{d}{dt} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{mg \alpha_1}{ml} & \frac{-kl \alpha_2}{ml} \end{bmatrix} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml} \end{bmatrix} u(t)$
 - eigenvalues of this determine stability

$$\rightarrow \det\left(\begin{bmatrix} \frac{-\lambda}{mg - \alpha_1} & 1\\ \frac{mg - \alpha_1}{ml} & \frac{-kl - \alpha_2 - ml\lambda}{ml} \end{bmatrix}\right) = 0 \Rightarrow ml\lambda^2 + (kl + \alpha_2)\lambda - (mg - \alpha_1) = 0$$

$$\lambda_{1,2} = \frac{-(kl + \alpha_2)}{2ml} \pm \frac{\sqrt{(kl + \alpha_2)^2 + 4ml(mg - \alpha_1)}}{2ml}$$

- I.P. w F.: $\frac{d}{dt} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{mg \alpha_1}{ml} & \frac{-kl \alpha_2}{ml} \end{bmatrix} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml} \end{bmatrix} u(t)$ eigenvalues of this determine stability

$$\rightarrow \det\left(\begin{bmatrix}\frac{-\lambda}{mg-\alpha_1} & 1\\ \frac{-kl-\alpha_2-ml\lambda}{ml}\end{bmatrix}\right) = 0 \Rightarrow ml\lambda^2 + (kl+\alpha_2)\lambda - (mg-\alpha_1) = 0$$

$$\lambda_{1,2} = \frac{-(kl + \alpha_2)}{2ml} \pm \frac{\sqrt{(kl + \alpha_2)^2 + 4ml(mg - \alpha_1)}}{2ml}$$

- I.P. w F.: $\frac{d}{dt} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{mg \alpha_1}{ml} & \frac{-kl \alpha_2}{ml} \end{bmatrix} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml} \end{bmatrix} u(t)$ eigenvalues of this determine stability

$$\rightarrow \det\left(\begin{bmatrix} \frac{-\lambda}{mg - \alpha_1} & 1\\ \frac{-kl - \alpha_2 - ml\lambda}{ml} \end{bmatrix}\right) = 0 \Rightarrow ml\lambda^2 + (kl + \alpha_2)\lambda - (mg - \alpha_1) = 0$$

make this negative

$$\lambda_{1,2} = \frac{-(kl + \alpha_2)}{2ml} \pm \frac{\sqrt{(kl + \alpha_2)^2 + 4ml(mg - \alpha_1)}}{2ml}$$

- I.P. w F.: $\frac{d}{dt} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{mg \alpha_1}{ml} & \frac{-kl \alpha_2}{ml} \end{bmatrix} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml} \end{bmatrix} u(t)$ eigenvalues of this determine stability

$$\lambda_{1,2} = \frac{-(kl + \alpha_2)}{2ml} \pm \frac{\sqrt{(kl + \alpha_2)^2 + 4ml(mg - \alpha_1)}}{2ml}$$

- I.P. w F.: $\frac{d}{dt} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{mg \alpha_1}{ml} & \frac{-kl \alpha_2}{ml} \end{bmatrix} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml} \end{bmatrix} u(t)$ eigenvalues of this determine stability

$$\lambda_{1,2} = \frac{-(kl+\alpha_2)}{2ml} \pm \frac{\sqrt{(kl+\alpha_2)^2 + 4ml(mg-\alpha_1)}}{2ml}$$
 make this negative

- I.P. w F.: $\frac{d}{dt} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{mg \alpha_1}{ml} & \frac{-kl \alpha_2}{ml} \end{bmatrix} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml} \end{bmatrix} u(t)$
 - eigenvalues of this determine stability

$$\rightarrow \det\left(\begin{bmatrix} \frac{-\lambda}{mg - \alpha_1} & 1\\ \frac{-kl - \alpha_2 - ml\lambda}{ml} \end{bmatrix}\right) = 0 \Rightarrow ml\lambda^2 + (kl + \alpha_2)\lambda - (mg - \alpha_1) = 0$$

make this negative

make this smaller than $|\mathbf{k}| + \alpha_2$

$$\lambda_{1,2} = \frac{-(kl+\alpha_2)}{2ml} \pm \frac{\sqrt{(kl+\alpha_2)^2 + 4ml(mg-\alpha_1)}}{2ml}$$
 make this negative

- to stabilize: make both evs -ve (real part)
 - choose any $\alpha_2 > -kl$, $\alpha_1 > mg$

• I.P. w F.:
$$\frac{d}{dt} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{mg - \alpha_1}{ml} & \frac{-kl - \alpha_2}{ml} \end{bmatrix} \begin{bmatrix} \theta(t) \\ v_{\theta}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml} \end{bmatrix} u(t)$$

• eigenvalues of this determine stability

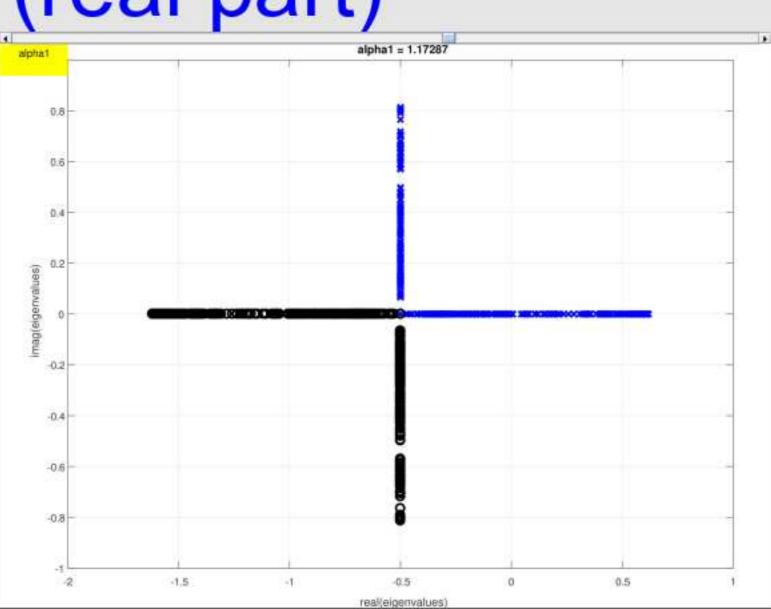
$$\rightarrow \det\left(\begin{bmatrix} \frac{-\lambda}{mg - \alpha_1} & 1\\ \frac{mg - \alpha_1}{ml} & \frac{-kl - \alpha_2 - ml\lambda}{ml} \end{bmatrix}\right) = 0 \Rightarrow ml\lambda^2 + (kl + \alpha_2)\lambda - (mg - \alpha_1) = 0$$

make this negative

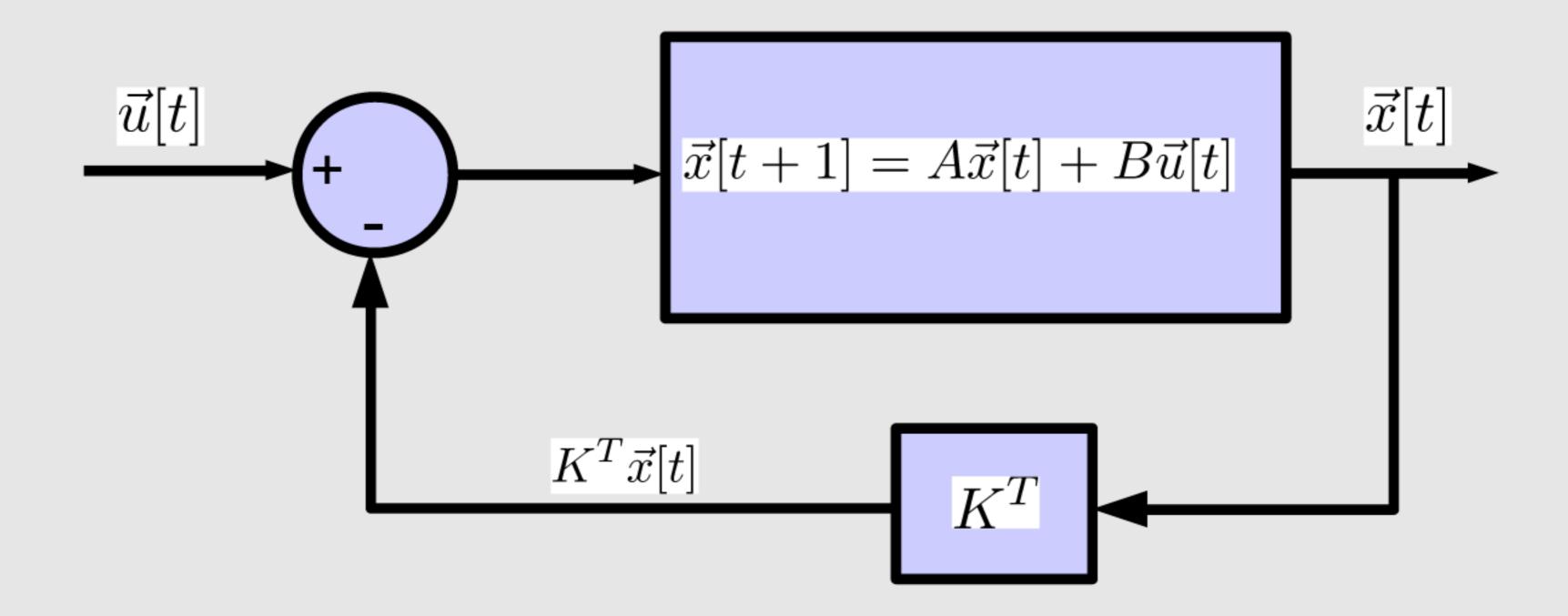
make this smaller than |kl+α₂|

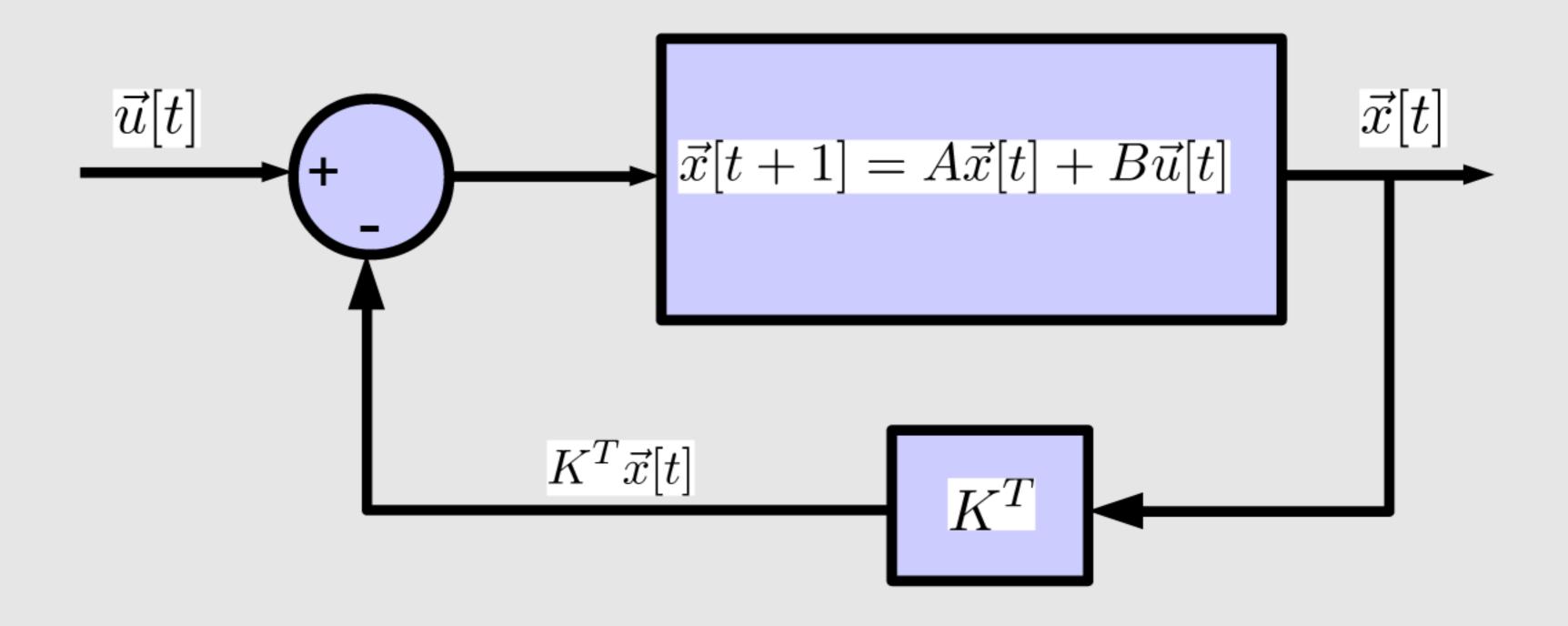
- to stabilize: make both evs -ve (real part)
 - choose any $\alpha_2 > -kl$, $\alpha_1 > mg$

run MATLAB demo inverted_pendulum_w_feedback_root_locus.m

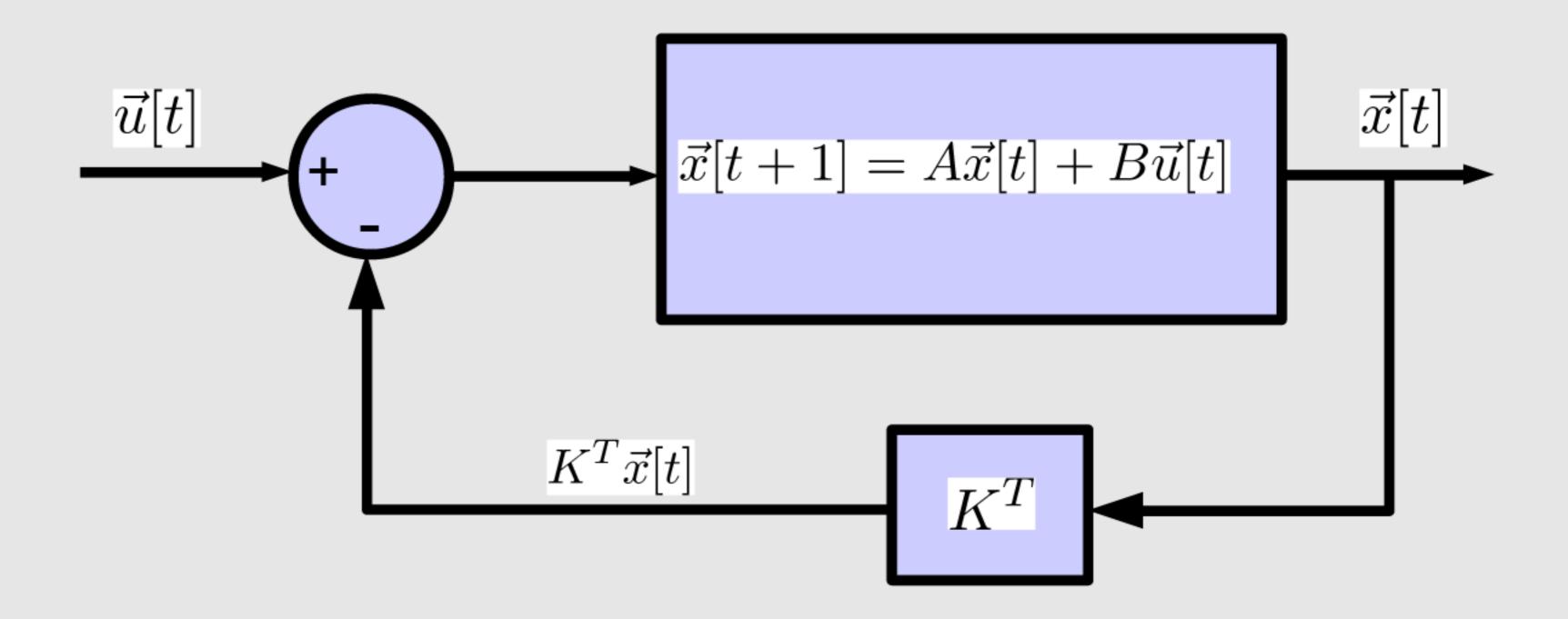


EE16B, Spring 2018, Lectures on Controllability and Feedback (Roychowdhury)

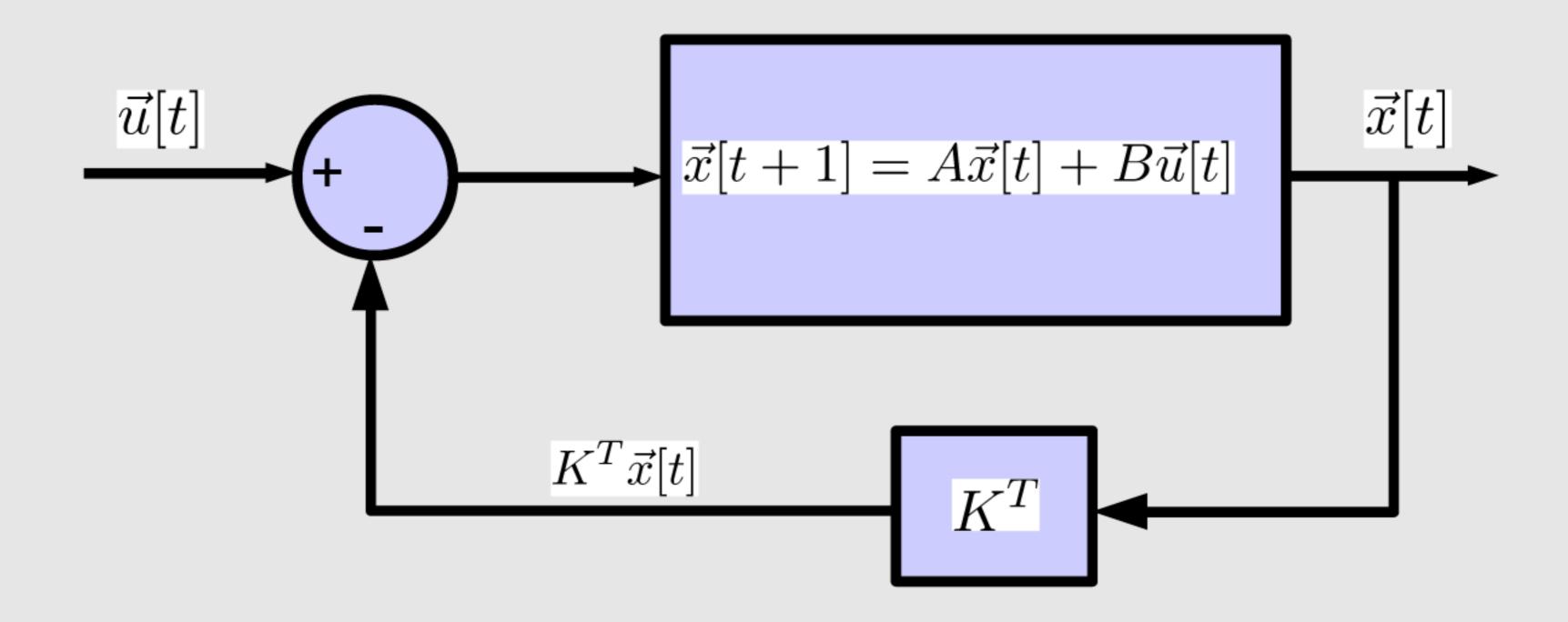




• system w feedback: $\vec{x}[t+1] = (A - B\vec{K}^T)\vec{x}[t] + B\vec{u}[t]$



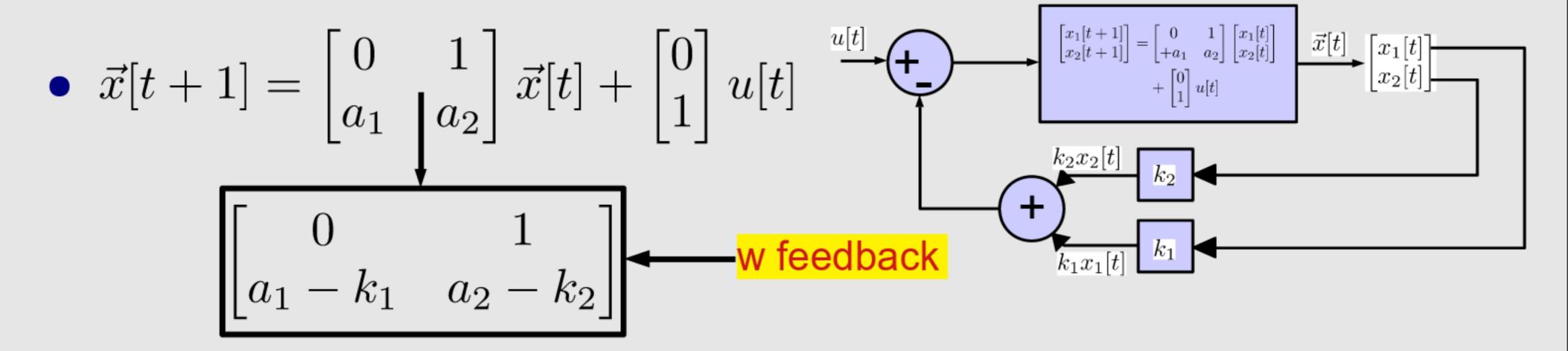
- system w feedback: $\vec{x}[t+1] = (A B\vec{K}^T)\vec{x}[t] + B\vec{u}[t]$
 - ullet stability still governed by the eigenvalues of $A-BK^T$

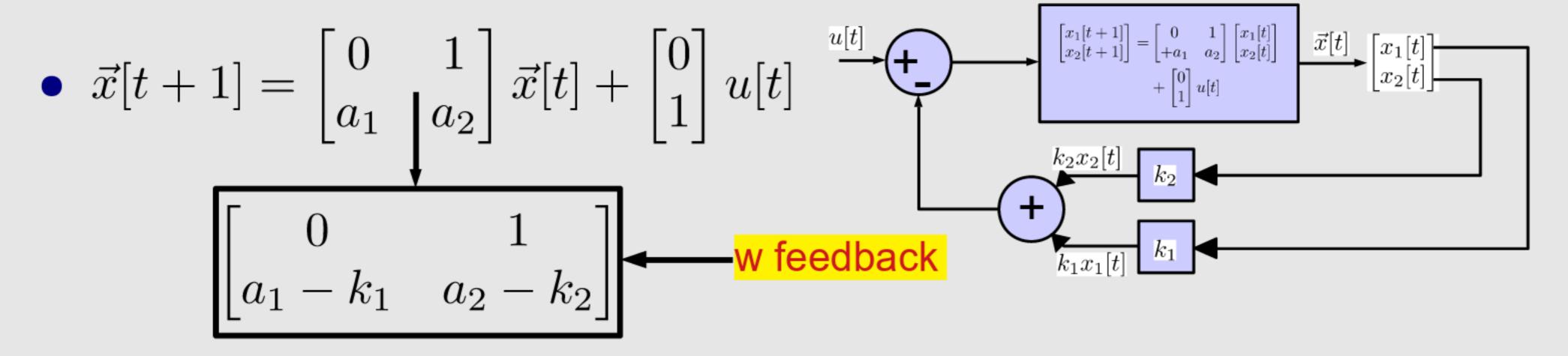


- system w feedback: $\vec{x}[t+1] = (A B\vec{K}^T)\vec{x}[t] + B\vec{u}[t]$
 - ullet stability still governed by the eigenvalues of $A-BK^T$
- stability (discr.) → magnitude of eigenvalues < 1
 - different from the continuous case

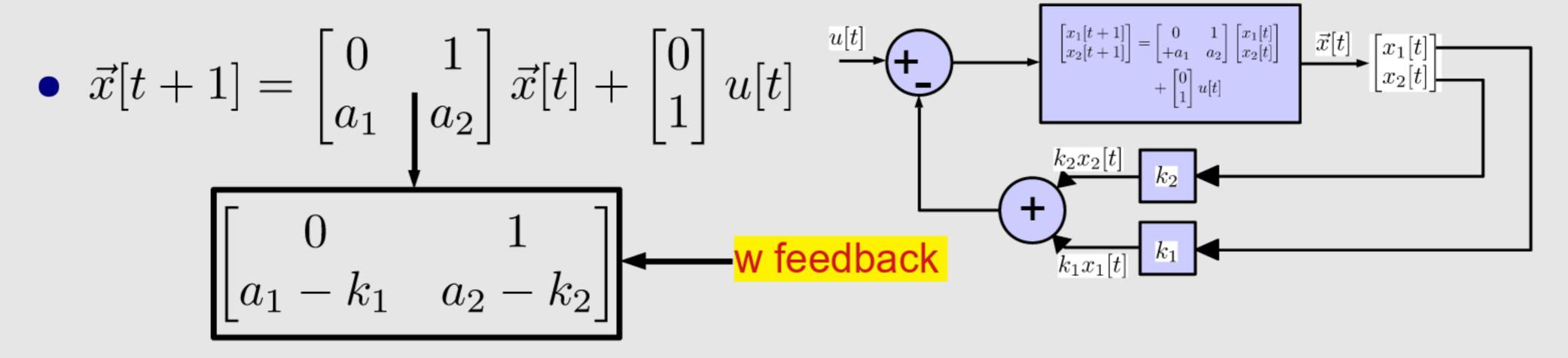
•
$$\vec{x}[t+1] = \begin{bmatrix} 0 & 1 \\ a_1 & a_2 \end{bmatrix} \vec{x}[t] + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u[t]$$

•
$$\vec{x}[t+1] = \begin{bmatrix} 0 & 1 \\ a_1 & a_2 \end{bmatrix} \vec{x}[t] + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u[t]$$
• $\vec{x}[t+1] = \begin{bmatrix} 0 & 1 \\ x_2[t+1] \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}$
• $\vec{x}[t]$

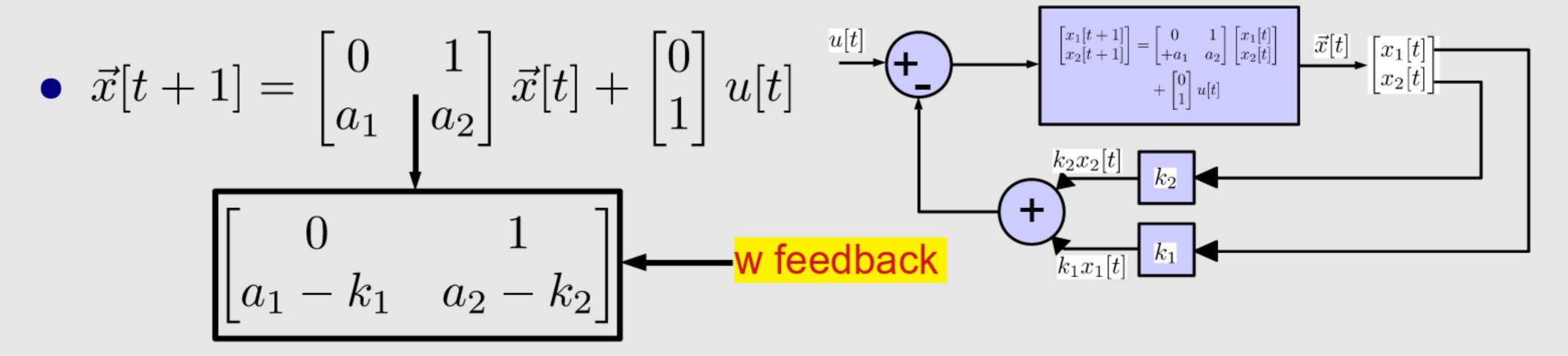




• char. poly.: $\lambda^2 - (a_2 - k_2)\lambda - (a_1 - k_1) = 0$

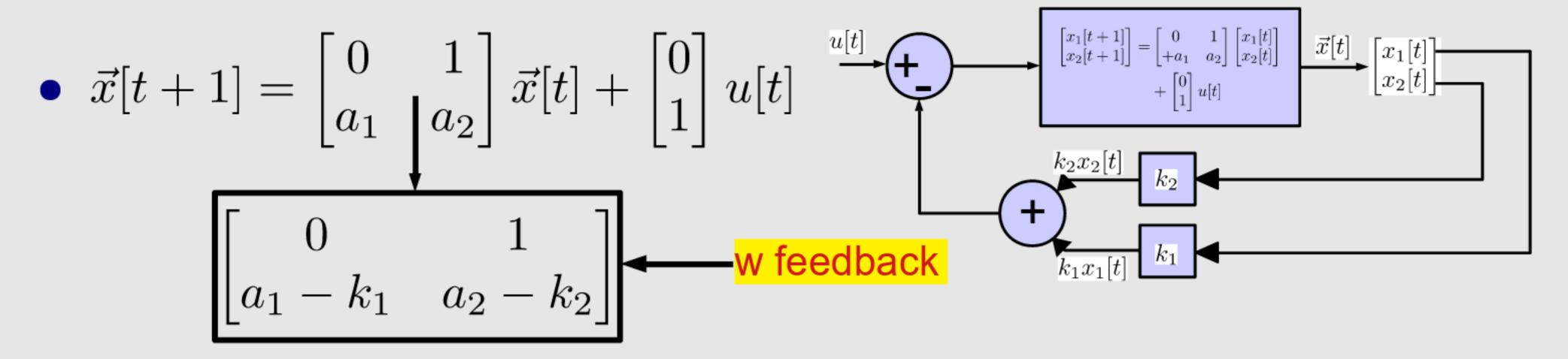


- char. poly.: $\lambda^2 (a_2 k_2)\lambda (a_1 k_1) = 0$
 - roots: $\lambda_{1,2} = \frac{a_2 k_2}{2} \pm \frac{1}{2} \sqrt{(a_2 k_2)^2 + 4(a_1 k_1)}$

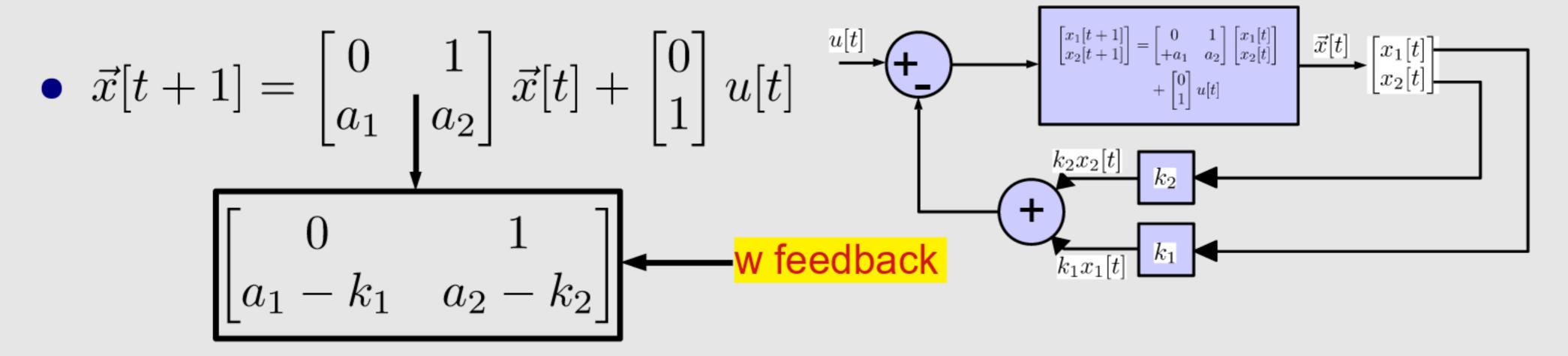


- char. poly.: $\lambda^2 (a_2 k_2)\lambda (a_1 k_1) = 0$
 - roots: $\lambda_{1,2} = \frac{a_2 k_2}{2} \pm \frac{1}{2} \sqrt{(a_2 k_2)^2 + 4(a_1 k_1)}$
- easy to express k_1 , k_2 in terms of λ_1 , λ_2 :

$$k_1 = \lambda_1 \lambda_2 - a_1$$
$$k_2 = a_2 - \lambda_1 - \lambda_2$$



- char. poly.: $\lambda^2 (a_2 k_2)\lambda (a_1 k_1) = 0$
 - roots: $\lambda_{1,2} = \frac{a_2 k_2}{2} \pm \frac{1}{2} \sqrt{(a_2 k_2)^2 + 4(a_1 k_1)}$
- easy to express k_1 , k_2 in terms of λ_1 , λ_2 :



- char. poly.: $\lambda^2 (a_2 k_2)\lambda (a_1 k_1) = 0$
 - roots: $\lambda_{1,2} = \frac{a_2 k_2}{2} \pm \frac{1}{2} \sqrt{(a_2 k_2)^2 + 4(a_1 k_1)}$
- easy to express k_1 , k_2 in terms of λ_1 , λ_2 :

- if λ_1 is complex: make sure λ_2 is the conjugate of λ_1 !
 - → otherwise, k₁/k₂/x₁/x₂ will have imaginary components
 - which would be physically meaningless

•
$$\vec{x}[t+1] = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \vec{x}[t] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u[t]$$

•
$$\vec{x}[t+1] = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \vec{x}[t] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u[t]$$

$$\begin{bmatrix} 1-k_1 & 1-k_2 \\ 0 & 2 \end{bmatrix}$$
 w feedback

•
$$\vec{x}[t+1] = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \vec{x}[t] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u[t]$$

$$\begin{bmatrix} 1-k_1 & 1-k_2 \\ 0 & 2 \end{bmatrix}$$
 w feedback

• char. poly.: $(1 - k_1 - \lambda)(2 - \lambda) = 0$

•
$$\vec{x}[t+1] = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \vec{x}[t] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u[t]$$

$$\begin{bmatrix} 1-k_1 & 1-k_2 \\ 0 & 2 \end{bmatrix}$$
 w feedback

- char. poly.: $(1 k_1 \lambda)(2 \lambda) = 0$
 - roots: $\lambda_1 = 1 k_1, \quad \lambda_2 = 2$

•
$$\vec{x}[t+1] = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \vec{x}[t] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u[t]$$

$$\begin{bmatrix} 1-k_1 & 1-k_2 \\ 0 & 2 \end{bmatrix}$$
 w feedback

- char. poly.: $(1 k_1 \lambda)(2 \lambda) = 0$
 - roots: $\lambda_1 = 1 k_1$, $\lambda_2 = 2$ does not depend on k_1 or k_2 ; ie, cannot be altered via feedback

•
$$\vec{x}[t+1] = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \vec{x}[t] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u[t]$$
 —not controllable
$$\begin{bmatrix} 1-k_1 & 1-k_2 \\ 0 & 2 \end{bmatrix}$$
 —w feedback

- char. poly.: $(1 k_1 \lambda)(2 \lambda) = 0$
 - roots: $\lambda_1 = 1 k_1$, $\lambda_2 = 2$ annot be altered via feedback

$$\vec{x}[t+1] = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \vec{x}[t] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u[t]$$
 not controllable
$$\begin{bmatrix} 1-k_1 & 1-k_2 \\ 0 & 2 \end{bmatrix}$$
 w feedback

- char. poly.: $(1 k_1 \lambda)(2 \lambda) = 0$
 - roots: $\lambda_1=1-k_1, \quad \lambda_2=2$ does not depend on k_1 or k_2 ; ie, cannot be altered via feedback
- suspicions (based on a few examples)
 - controllable → can place all eigenvalues via careful feedback
 - not controllable → might not be able to place all evs

Summary

- Controllability
 - controllability matrix must be full rank
 - C-H Theorem
 - examples: accelerating car (discrete), R-L1-L2 ckt
- Feedback
 - controllable + unstable = useless
 - uncontrollable + unstable = REALLY useless?
 - feedback (from state to input) can stabilize (evs moved)
 - inverted pendulum and other examples