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Controllability

nxn matrix hx1 vector

» Given (linearized) S.S.R: AZ[t + 1] —AAZ[t] ThAul{]

* can you drive Az[t] to any value you want (using Aft] )?
> e, can you control Ax|t| completely?
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Controllability

nxn matrix nhxi Vect\or
e Given (linearized) S.S.R: AZ[t + 1] =AAZ[t] TbAut
* can you drive Az[t] to any value you want (using Aft] )?
> e, can you control Ax|t| completely? AZ[t] =A' AZ[0]+

* say AZ|0] =0 (w.l.o.g, see notes) Zt:At—iEAu[i — 1]

must be full rank (ie, rank = n)

=1
\ i A’LL 0 i
Aull

AZ[n] = A=1p An=2p ... Ab,b

Auln — 2
| Auln —1

* would like to make Ax|n| anything we like in R"

* rank: number of lin. indep. columns (= # of lin. iIndep. rows)
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Controllability: simple example

o span(|At~1b| A*=2p| --- | Ab|b

) = span(
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Controllability: simple example

o span(| A1 A*=2p| --- | Ab|b|) = span(|b| Ab| - -- | A*~1b|)
oA | 1} B=b= | B | AB | A’B| -] =

101 1 -
0 2 0 o 0 0 ---.
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Controllability: simple example

e span(|At~15| A=25| - | Ab|b|) = span(|b| Ab| --- | A=15|)
not _COntI‘O_|a|£ o rank = 1 < n=2 )
Az [t+1]] (1 1] [Ax[t 1
* [he system: [A:UQ t+ 1] — [0 )| [Aatg t] 1+ | ] u(t)
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Controllability: simple example

e span(

o A —

N\

At—lg‘At—Qm
cHEh

0 2 -

not controllable

e The

system:

B—p—

| Ab|b|) = span(|b| Ab| --- | A¥1b|)
Wilap a2 1= ' ¢
0 000
o rank = 1 < n=2

Au(t) has no influence on AX,|[f] \sz[t + 1] — 2Am2[t]

e When does b, Ab, - - -
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* When does 5, Ag, .-+ run out of lin. indep vectors?

* every A has a minimal polynomial (result from lin. alg.)
> je, forsome ksn, A® + ¢, _1 A" P 4 o AN T2+ oo f 1A+ ol =0
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* When does 5, Ag, .-+ run out of lin. indep vectors?

* every A has a minimal polynomial (result from lin. alg.)
> je, forsome ksn, A® + ¢ 1A '+ AN 2+ oo+ A+ ol =0
> e, Ab = —cp 1 AP TTD — ) 0 AR 20— o — ) Ab — cob

N———— e ————
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Cayley-Hamilton Theorem

* Every matrix A satisfies its own characteristic
polynomial!

e char. poly.: pa(A\) = det(A — \)
— AN+ a, (N 4+ a )+ ag
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Example: Accelerating Car
e control input: acceleration
@ﬂ
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* analysis approach

* find a discrete SSR for position/vel. 0 T
* analyse its controllability

accel

oT 3T 4T
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Accelerating car (contd.)

* acceleration: a; velocity: v; position: x
. “U(T) :/0 a(’Tg)dTQ, $(’T) :/(; U(TQ)dT2

e o(r) = (iT) = /

. a(mo)dro= a(tT) /T dro = (7 — tT)a(tT)

T tT <7< (t+1)T
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Accelerating car (contd.)

* acceleration: a; velocity: v; position: x
. “U(T) :/0 a(’Tg)dTQ, $(’T) :/(; U(TQ)dT2

e o(r) = (iT) = /

. a(mo)dro= a(tT) /T dro = (7 — tT)a(tT)

T tT <7< (t+1)T

T T

o x(7)—x(tT) = / v(T2)dTy = /tT v(tT) + a(tT) (9 — tT)] dro

tT
tT <7< @t+1)T
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Accelerating car (contd.)

* acceleration: a; velocity: v; position: x
. “U(T) :/0 a(’Tg)dTQ, $(’T) :/(; U(TQ)dT2

o v(7) —v(tT) = /T a(1o)dro= a(tT) /T dro = (7 — tT)a(tT)

T T tT <7< (t+1)T
o x(7)—x(tT) = /t; v(T2)dTy = /t; v(tT) + a(tT) (9 — tT)] dro
(1 — tT)?

tT <7< @t+1)T

= (7 —tT)v(tT) + a(tT) :
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Accelerating car (contd.)

* acceleration: a; velocity: v; position: x
. “U(T) :/0 a(’Tg)dTQ, $(’T) :/(; U(TQ)dT2

e o(r) = (iT) = /

T

a(7o)dTe = a(tT)/ dro = (7 — tT)a(tT)

T T tT <7< (t+1)T
o x(7)—x(tT) = /t; v(T2)dTy = /t; v(tT) + a(tT) (9 — tT)] dro
(1 — tT)?

tT <7< @t+1)T

= (7 —tT)v(tT) + a(tT) :

e set 7= (t+1)T; the above become:

o .Cl?((t T 1)T) — J?(tT) - T’U(tT) | TQQQ(tT)

v((t+ 1)T) =v(tT) + Ta(tT)
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Accelerating car (contd. - 2)

o z((t+1)T) 7a(tT)

v((t+1)T)

x(tT) + To(tT) -

v(tT) + Ta(tT)
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Accelerating car (contd. - 2)

o z((t+ 1)T) = x(tT) + Tw(tT) - a(tT)

v((t+ 1)T) =v(tT) + Ta(tT)

e S.S.R In matrix-vector form:

. z((t+1)T)| (1 T| [z(tT) TT
o((t+1)T)| |0 1| |o(tT) T T a(t)
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Accelerating car (contd. - 2)

o z((t+ 1)T) = x(tT) + Tw(tT) - a(tT)

v((t+ 1)T) =v(tT) + Ta(tT)

e S.S.R In matrix-vector form:

. z((t+1)T)| (1 T| [z(tT) TT
o((t+1)T)| |0 1| |o(tT) T T a(t)

e Controllability matrix: 5| 45| =
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Accelerating car (contd. - 2)

T?a(tT)

o ((t+ 1)T) =x(tT)+ Tv(tT)
v((t+ 1)T) =v(tT) + Ta(tT)

e S.S.R In matrix-vector form:

. [el@+ D] _ 1T [«0T)] | [
o] = o 1 o) + T a(t)
- " - - T_2 3T_2-
» Controllability matrix: |5 | 45| = |’z “ 2

T2 T T3 T3
odet(% 3,13 ): 3— = 79
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Accelerating car (contd. - 2)

T?a(tT)

o ((t+ 1)T) =x(tT)+ Tv(tT)
v((t+ 1)T) =v(tT) + Ta(tT)

e S.S.R In matrix-vector form:

. [el@+ D] _ 1T [«0T)] | [
ot +1)7)] T o 1] foen)| T T "
- " - - _T_2 3T_2-
» Controllability matrix: |5 | 45| = |’z “ 2

T2 T T3 T3
o det ( % 3,13 ) — 3— = —T‘Q’q—always nonzero (for T#0)
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Accelerating car (contd. - 2)

T?a(tT)

o ((t+ 1)T) =x(tT)+ Tv(tT)
v((t+ 1)T) =v(tT) + Ta(tT)

e S.S.R in matrix-vector form:

z(t+D)T)| (1 T |z(tT) T;
) v((t+1)T) a 0 1) [v(tT) T T alt)

. R T
e Controllability matrix: |o | 46| = 2 )

T2~
2
T —

-T_2 3T_2- T3 T3 3
® det ( % 1_2' ) — 9 7 =i -l—always nonzero (for T#O)

* A: YES, we can drive the car's position AND velocity
to whatever values we want (at every t=tT for t=2)
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Continuous Time Controllability

nxn Mmatrix nxm matrix

e System: %A:ﬁ’(t) AAE(H) TBAG()
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Continuous Time Controllability

nxn Mmatrix nxm matrix

e System: %A:ﬁ’(t) AAE(H) TBAG()

e Controllability: same condition as for discrete
rank (|[B|AB| --- |A""'B|) =n
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Continuous Time Controllability

nxn Mmatrix nxm matrix

e System: %A:E"(t) AAE(H) TBAG()

e Controllability: same condition as for discrete
rank (|[B|AB| --- |A""'B|) =n

_I_
: : I(t - -
. Example: RL circuit  *©® Br B w3
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Continuous Time Controllability

nxn Mmatrix nxm matrix

e System: %A:E"(t) AAE(H) TBAG()

e Controllability: same condition as for discrete

rank (|[B|AB| --- |A""'B|) =n
_I_
: : I(t . .
* Example: RL circuit | ‘EEE
it iyt =0 Y_ v dz_ v
i dt L, dt Lo
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Continuous Time Controllability

nxn Mmatrix nxm matrix

e System: %A:E"(t) AAE(H) TBAG()
e Controllability: same condition as for discrete
rank (|[B|AB| --- |A""'B|) =n

_I_
: : I (t - -
. Example: RL circuit ~ *©® Br B w3

it iyt =0 Y_ v dz_ v
it L, dt Lo

diy  R(I1(t) —11(t) —i2(t)) dis R(I1(t) —i1(t) —i2(t))

dt I ' dt Lo
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Continuous Time Controllability

nxn Mmatrix nxm matrix

e System: %A:E"(t) AAE(H) TBAG()

e Controllability: same condition as for discrete

rank (|[B|AB| --- |A""'B|) =n
_I_
: : I(t . .
* Example: RL circuit | ‘EEE
it iyt =0 Y_ v dz_ v
i dt L, dt Lo

diy  R(I1(t) —11(t) —i2(t)) dis R(I1(t) —i1(t) —i2(t))

Cdt L BT T,
d[i@®)]  [-& —E1[ia@]  [£

o LU\t _ 1\ I(t
it [io)| = =2 R iy T AW
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Continuous Controllability (contd.)

d i (t)]
® io(t)|

R

A

R_ —

Lo

A

Lod L

21
12

t)

()

k —

_|_
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Continuous Controllability (contd.)

R_ —

dt |1o(t

R

A

Lo

A

Lod L

21

22 (

e Controllability matrix:

i
LA

R
Lo

R2 R2

L2 LiL
R2 R?

LiL, L2

_|_
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Continuous Controllability (contd.)

R_ —

dt |1o(t

R

A

Lo

A

Lod L

21

12

e Controllability matrix:

[ R
Ly
R

| Lo

R2 R2 -1

L2 LiL
R2 R?

LiLy L2 _

t)
()

k —

_|_

EE16B, Spring 2018, Lectures on Controllability and Feedback (Roychowdhury)
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it
Lo

I(¢)

R R -
W

L

1

Lo -

/

Ll
0

R

Lo -

rank = 1 < n=2
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Continuous Controllability (contd.)
i1 (t)
i2(t)

d i (t)| _
° dt io(t)| |

R

A

R_ —

Lo

A

not controllable

e Controllability matrix:

[ R
Ly
R

| Lo

R2 R2 -1

L2 LiL
R2 R?

LiLy L2 _

_|_
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L

I(¢)

R R -
W

L

1

Lo -

/

Ll
0

R

Lo -

rank = 1 < n=2

Slide 10



Continuous Controllability (contd.)

R_ —

d iy ()] _ [~
o — |. , (| = j3
dt _ZQ(t,ﬂ_ L LQ

A

not controllable

21

12

e Controllability matrix:

_ i [ R
— — Ll

o [b]Ab|= |}
N | _L2

t)

()

k —

R? R? 7

L?  LiL-
R2 R?

LiLy L2 _

_|_

1
1

_R_

it
L

I(¢)
I(t)

0

L

* Intuitive/“physical” way to see it:

i and i, both directly determined by the same v(t)
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Continuous Controllability (contd.)

d . t\' - R R r- rt' - R
o — Z.l(t:: = | Ly Z.l,‘:t) + Li I(t)

dt _?’2( ) | L Tin ﬁ_ 12\ )_ L

not controllable I (t) @EE
e Controllability matrix:
AT -Li I[%; LR;, | 1 R A
* blAb| = |k R TRE|=|; _E_E I{)l R
Lo L4 Lo Lg_ - L Lod L Lo .

/

rank = 1 < n=2

* [ntuitive/"physical” way to see it:
i and i, both directly determined by the same v(t)

dzl v dio v

dt L’ dt Lo

d
dt — (L121(t) — Lota(t)) =0 — Lyiy1(t) — Lais(t) = constant
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Continuous Controllability (contd.)

d . t\' - R R r- rt' - R
o — Z.l(t:: = | Ly Z.l,‘:t) + Li I(t)

dt _?’2( ) | L Tin ﬁ_ 12\ )_ L

not controllable I (t) @EE
e Controllability matrix:
AT -Li I[%; LR;, | 1 R A
* blAb| = |k R TRE|=|; _E_E I{)l R
Lo L4 Lo Lg_ - L Lod L Lo .

/

rank = 1 < n=2

* [ntuitive/"physical” way to see it:
i and i, both directly determined by the same v(t)

dz () dio () cannot be set independently

dt L' dt Lo \ /
d

dt — (L121(t) — Lota(t)) =0 — Lyiy1(t) — Lois(t) = constant
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Feedback

* The concept of feedback
* add/subtract some of the output/state from the input
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Feedback

* The concept of feedback
* add/subtract some of the output/state from the input
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Feedback

* The concept of feedback
* add/subtract some of the output/state from the input

Input

e Uses

* making systems less sensitive to undesired noise
and uncertainties (ALWAYS PRESENT in practical systems)

* stabilizing unstable systems (if they are controllable)
> thus making them practically usable
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The Problem with Open Loop Control

* “open loop” means: no feedback
* “closed loop” means a system with feedback
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The Problem with Open Loop Control

* “open loop” means: no feedback
* “closed loop” means a system with feedback

e example:*z(t) = ax(t) +u(t), a=1>0

* dropping A from Ax and Au (for convenience)
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The Problem with Open Loop Control

* “open loop” means: no feedback
* “closed loop” means a system with feedback

¢ example:*x'(t) = ax(t) +u(t), a=1> 0<—unstable

* dropping A from Ax and Au (for convenience)

EE16B, Spring 2018, Lectures on Controllability and Feedback (Roychowdhury) Slide 12



The Problem with Open Loop Control

* “open loop” means: no feedback
* “closed loop” means a system with feedback

¢ example:*x'(t) = ax(t) +u(t), a=1> 0<—unstable
* but controllable (Why?) * dropping A from Ax and Au (for convenience)
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The Problem with Open Loop Control

* “open loop” means: no feedback
* “closed loop” means a system with feedback

¢ example:*x'(t) = ax(t) +u(t), a=1> 0<—unstable
* but controllable (Why?) * dropping A from Ax and Au (for convenience)
* goal: make x(t=10) = 1, starting with [.C. x(0) = 1
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The Problem with Open Loop Control

* “open loop” means: no feedback
* “closed loop” means a system with feedback

¢ example:*x'(t) = ax(t) +u(t), a=1> 0<—unstable
* but controllable (Why?) * dropping A from Ax and Au (for convenience)
* goal: make x(t=10) = 1, starting with [.C. x(0) = 1

10
i) =100 1 [ i
0
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The Problem with Open Loop Control

* “open loop” means: no feedback
* “closed loop” means a system with feedback

¢ example:*x'(t) = ax(t) +u(t), a=1> 0<—unstable
* but controllable (Why?) * dropping A from Ax and Au (for convenience)
* goal: make x(t=10) = 1, starting with [.C. x(0) = 1

/try u(t) = constant

10
o)<t 4 [ vl
0
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The Problem with Open Loop Control

* “open loop” means: no feedback
* “closed loop” means a system with feedback

¢ example:*x'(t) = ax(t) +u(t), a=1> 0<—unstable
* but controllable (Why?) * dropping A from Ax and Au (for convenience)
* goal: make x(t=10) = 1, starting with [.C. x(0) = 1

/try u(t) = constant

10
e 2(10) =1-¢e'” + / eV Tu(r)dr =1-e’ —I-\f‘u,(e10 — 1)
0
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The Problem with Open Loop Control

* “open loop” means: no feedback
* “closed loop” means a system with feedback

¢ example:*x'(t) = ax(t) +u(t), a=1> 0<—unstable
* but controllable (Why?) * dropping A from Ax and Au (for convenience)
* goal: make x(t=10) = 1, starting with [.C. x(0) = 1
/try u(t) = constant

10
e 2(10) =1-¢e'” + / eV Tu(r)dr =1-e’ —I-\f‘u,(e10 — 1)
0

e want: 1 =z(10) =1-¢e"” +u(e'” — 1)
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The Problem with Open Loop Control

* “open loop” means: no feedback
* “closed loop” means a system with feedback

¢ example:*x'(t) = ax(t) +u(t), a=1> 0<—unstable
* but controllable (Why?) * dropping A from Ax and Au (for convenience)
* goal: make x(t=10) = 1, starting with [.C. x(0) = 1

/try u(t) = constant

10
e 2(10) =1-¢e'” + /0 610_:’11,(’7') dr =1-¢e" —I-\f‘u,(e10 — 1)

e want: 1 = 2(10) =1-¢"" —I-\%L(elo — 1)
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The Problem with Open Loop Control

* “open loop” means: no feedback
* “closed loop” means a system with feedback

¢ example:*x'(t) = ax(t) +u(t), a=1> 0<—unstable
* but controllable (Why?) * dropping A from Ax and Au (for convenience)
* goal: make x(t=10) = 1, starting with [.C. x(0) = 1

/try u(t) = constant

10
e 2(10) =1-¢e'” + /0 610_:’11,(’7') dr =1-¢e" —I-\f‘u,(e10 — 1)

e want: 1 = 2(10) =1-¢e" —|-\"u,(e10 — 1)
e suppose there’'s a 0.1% error inthe IC: 1 — 1.001
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The Problem with Open Loop Control

* “open loop” means: no feedback
* “closed loop” means a system with feedback

e example:" i (t) = ax(t) + u(t),

but controllable (why?)

a = 1 > () «—unstable

* dropping A from Ax and Au (for convenience)

goal: make x(t=10) = 1, starting with |.C. x(0) = 1

o

try u(t) = constant

10
r(10) =1-e'" + / eV Tu(r)dr =1-e’ —I-\f‘u,(e10 — 1)
0

-1

want: 1 = z(10) =1-¢e"’ —|-\"u,(e10 — 1)
suppose there’'s a 0.1% error in the IC: 1 — 1.0071

new z(10) = 1.001 - '

u(e!® —1) =1
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The Problem with Open Loop Control

* “open loop” means: no feedback

* “closed loop” means a system with feedback

e example:"i(t) = ax(t) + u(t), a =1 > 0<—unstable
* but controllable (why?) * dropping A from Ax and Au (for convenience)
* goal: make x(t=10) = 1, starting with [.C. x(0) = 1

o

try u(t) = constant

10
e 2(10) =1-¢e'” + / eV Tu(r)dr =1-e’ —I-\f‘u,(e10 — 1)
0

-1

e want: 1 = 2(10) =1-¢"" —I-\%L(elo — 1)

e suppose there’'s a 0.1% error inthe IC: 1 — 1.001

e new z(10) = 1.001 - e 4 u(e’® = 1) =1
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The Problem with Open Loop Control

* “open loop” means: no feedback

* “closed loop” means a system with feedback

e example:"i(t) = ax(t) + u(t), a =1 > 0<—unstable
* but controllable (why?) * dropping A from Ax and Au (for convenience)
* goal: make x(t=10) = 1, starting with [.C. x(0) = 1

o

try u(t) = constant

10
e 2(10) =1-¢e'” + / eV Tu(r)dr =1-e’ —I-\f‘u,(e10 — 1)
0

-1

e want: 1 = 2(10) =1-¢"" —I-\%L(elo — 1)

e suppose there’'s a 0.1% error inthe IC: 1 — 1.001

e new z(10) = 1.001 - e 4 u(e’® = 1) =1
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The Problem with Open Loop Control

* “open loop” means: no feedback
* “closed loop” means a system with feedback

e example:" i (t) = ax(t) + u(t),

a = 1 > () «—unstable

but controllable (Why?) * dropping A from Ax and Au (for convenience)
goal: make x(t=10) = 1, starting with |.C. x(0) = 1

o

try u(t) = constant

10
r(10) =1-e'" + / eV Tu(r)dr =1-e’ —I-\f‘u,(e10 — 1)
0

-1
want: 1 = z(10) =1-¢'" —I-\%L(elo — 1)

suppose there’'s a 0.1% error in the IC: 1 — 1.0071

new x(10) = 1.001 - e’ + u(e!® —1) =1

0.1% error in IC — 2200% error in x(10)
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The Problem with Open Loop Control

* “open loop” means: no feedback

* “closed loop™ means a system with feedback

e example:"i(t) = ax(t) + u(t), a =1 > 0<—unstable
* but controllable (why?) * dropping A from Ax and Au (for convenience)
* goal: make x(t=10) = 1, starting with I.C. x(0) = 1

o

try u(t) = constant

10
e 2(10) =1-¢e'” + / eV Tu(r)dr =1-e’ —I-\f‘u(e10 — 1)
0

-1

e want: 1 = 2(10) =1-¢"" —I-\%f,(elo — 1)

* suppose there's a 0.1% errorinthe IC: 1 — 1.001

e new z(10) = 1.001-e'’ +u(e'’ —1) =1

* 0.1% error in IC — 2200% error in x(10)

eV ~ 22026

if system unstable, control in the presence of errors/noise is impossible in practice

EE16B, Spring 2018, Lectures on Controllability and Feedback (Roychowdhury)

Slide 12



The Problem with Open Loop Control

* “open loop” means: no feedback
* “closed loop™ means a system with feedback

e example:"i(t) = ax(t) + u(t), a =1 > 0<—unstable
* but controllable (why?) * dropping A from Ax and Au (for convenience)
* goal: make x(t=10) = 1, starting with I.C. x(0) = 1

/try u(t) = constant

10
e 2(10) =1-¢e'” + /0 elO_Zu(T) dr =1-¢e" —I-\f‘u(e10 — 1)

e want: 1 = 2(10) =1-¢e" —I-\%f,(elo — 1)

* suppose there’'s a 0.1% error in the IC: 1 — 1.001

e new z(10) = 1.001 - e +u(e'’ = 1) =1 -- 22

* 0.1% error in IC — 2200% error in x(10) .10 < 9909¢
* How will this change ifa = -17

if system unstable, control in the presence of errors/noise is impossible in practice
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Stabilization via Feedback (Scalar)
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Stabilization via Feedback (Scalar)

e apply feedback: u(t) — u(t) — Sx(t)
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Stabilization via Feedback (Scalar)

e apply feedback: u(t) — u(t) — Sx(t)

o 1(t)=ax(t)+u(t) — x(t) = ax(t) + u(t) — Bx(t), a=1>0
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Stabilization via Feedback (Scalar)
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Stabilization via Feedback (Scalar)

EE16B, Spring 2018, Lectures on Controllability and Feedback (Roychowdhury) Slide 13



Stabilization via Feedback (Scalar)

e apply feedback: u(t) — u(t) — Sx(t)

o i(t) =ax(t)+u(t) —|x(t) =ax(t) +u(t) — Bx(t), a=1>0

o i(t) =|(a—Bl(t) +u(t), a=1>0

choose p>a — system is stabilized
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Feedback for Vector S.S. Systems

assumption for simplicity:
the input is still scalar

u(t)
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Feedback for Vector S.S. Systems

assumption for simplicity:
the input is still scalar

u(t)

e system w feedback: z(t) = (A — bk")Z(t) + bu(t)
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Feedback for Vector S.S. Systems

assumption for simplicity:
the input is still scalar

u(t)

rank 1 matrix

o system w feedback: #(t) = (A —|bk?)Z(t) + bu(t)
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Feedback for Vector S.S. Systems

assumption for simplicity:
the input is still scalar

u(t)

rank 1 matrix

e system w feedback: z(t) = (A —f(t) bu(t)

e stability governed by eigenvalues of A4 — bk’
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Feedback for Vector S.S. Systems

assumption for simplicity:
the input is still scalar

u(t)

rank 1 matrix

e system w feedback: z(t) = (A —f(t) bu(t)
e stability governed by eigenvalues of A
* Q: how do the e.values of A change due to
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Feedback for Vector S.S. Systems

assumption for simplicity:
the input is still scalar

u(t)

rank 1 matrix

o system w feedback: #(t) = (A —|bk?)Z(t) + bu(t)
e stability governed by eigenvalues of A
* Q: how do the e.values of A change due to
 very difficult to figure out analytically!
> can do simple examples; otherwise, numerically
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- . dfew)y] [o 1 ][e)] [0
® Ip E ’U(-}(t) ‘|‘% Kk fb’g(t)_ + 1 u(t)

ml

° Closed Ioép éysterﬁ tie, wi’fh -feedback)

Linearized
Inverted pendulum

i o) = L+4 —5] o] * ] =0
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. ] d
*i.p.. -

ot

vg (1)

0 1
k
+7 =

o)
vg(t)

ml

u(t)

° Closed Ioép éysterﬁ

tie, wi’fh -feedback)

Linearized
Inverted pendulum

d o] _ 1
i L] =131 -

| o] * ]

0
C}fle(t)

¥ }%] ) _migf“ f;] i(ft)) ' [;] o
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Stabilizing |.P. via feedback (contd.)

: A o)
.P.wF.: =

vo(t).

0

mg—o

- mil

1

—kl—(ﬁl{g

6(1)

ml
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| [va(t).

_|_

0

1
ml _

u(t)
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Stabilizing |.P. via feedback (contd.)

0(t) 0

1

d
- IP W F E _”Ug(t)_ — | mg—o —kl—ao

- mil

EE16B, Spring 2018, Lectures on Controllability and Feedback (Roychowdhury)

ml

6(1)

| [ve(t)_
* eigenvalues of this determine stabillity

_|_

0

- ml

u(t)
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Stabilizing |.P. via feedback (contd.)

o d
e IP.wF.: &

2> det ( mg_—/\m

L ml

6(1)
vo(t).

1
—kl—as—ml\

ml

0

mg—o

ml

1

—kl—(ﬁl{g

ml
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6(1)

_ | [ve(t).
* eigenvalues of this determine stabillity
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0

1
ml _
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Stabilizing |.P. via feedback (contd.)

o d
e IP.wF.: &

2> det ( mg_—/\m

L ml

6(1)
vo(t).

1
—kl—as—ml\

ml

0 1

maqg—ao —kl—ao

ml ml

6(1)

_ | [ve(t).
* eigenvalues of this determine stabillity

_|_

0

1
ml _

u(t)

>:0=> mI\* + (kl + as)\ — (mg — a1) =0
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Stabilizing |.P. via feedback (contd.)

o LA o) _ | O 1 ][00 07,
IP \"\" F At _”Ug(t)_ — _mg;r:lal —k?il—lag_ _’Ug(t)_ + -%_ (t)

* eigenvalues of this determine stabillity
> det ( mg_—Aﬂfl —kl—f:i-ﬂtl)\ ) = 0= ml)\g _I_ (kl _I_ 052))\ — (mg — 051) — 0

L ml ml

> N0 — —(kl + a2) | /(kl+ a2)? +4mi(mg — aq)
b 2ml - 2ml
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Stabilizing |.P. via feedback (contd.)

o | P.wkF.: =

d | 6(t)
t |va(t)

0 1 0(t) N
mg;r:lcxl —kfil—lag _,09 (t)_

* eigenvalues of this determine stabillity

— 1
= det( mg_/\m —kl—ao—mi\
L ml ml
—(kl + a2) | /(kl+ a2)* + 4ml(mg — a1)
=" Al 2 = 1

0

1
ml _

* to stabilize: make both evs -ve (real part)
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>:0=> mI\* + (kl + as)\ — (mg — a1) =0
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Stabilizing |.P. via feedback (contd.)

o LA o) _ | O 1 ][00 07,
IP \"\" F At _”Ug(t)_ — _mg;r:lal —k?il—lag_ _’Ug(t)_ + -%_ (t)

* eigenvalues of this determine stabillity
> det ( mg_—Aﬂfl —kl—f:i-ﬂtl)\ ) = 0= ml)\g _I_ (kl _I_ 052))\ — (mg — 051) — 0

L ml ml

make this negative

r'd
> N0 — —(kl + ) L \/(kl + a)? + dml(mg — aq)
he ™ 2ml - 2ml

* to stabilize: make both evs -ve (real part)
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Stabilizing |.P. via feedback (contd.)

o LA o) _ | O 1 ][00 07,
IP \"\" F At _”Ug(t)_ — _mg;r:lal —k?il—lag_ _’Ug(t)_ + -%_ (t)

* eigenvalues of this determine stabillity
> det ( mg_—Aﬂfl —kl—f:i-ﬂtl)\ ) = 0= ml)\g _I_ (kl _I_ 052))\ — (mg — 051) — 0

L ml ml
make this negative make this smaller than |kl+ao.|
P Y
—(kl + ) \/(kl + a)? + dml(mg — aq)
> A2 = -
” 2ml 2ml

* to stabilize: make both evs -ve (real part)
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Stabilizing |.P. via feedback (contd.)

: d [o)
.P.wF.: =

vo(t).

0 1 0(t) 0
— | mg—aq —kl— oo _UQ (t)_ T 1 U(t)

ml ml ml

- ml

* eigenvalues of this determine stabillity

> det ( mg_—Aﬂfl —kl—f:i-ﬂtl)\ ) = 0= ml)\g _I_ (kl _I_ 052))\ — (mg — 051) — 0

L ml ml

make this negative

make this smaller than |kl+ao.|

4 4
> )\, — —(kl 4 ag)] | /(K + as)? + Uml(mg — al)H-make this negative
b 2ml 2ml

* to stabilize: make both evs -ve (real part)
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Stabilizing |.P. via feedback (contd.)

: d [o)
.P.wF.: =

vo(t).

0 1 0(t) 0
— | mg—aq —kl— oo _UQ (t)_ T 1 U(t)

ml ml ml

- ml

* eigenvalues of this determine stabillity

> det ( mg_—Aﬂfl —kl—f:i-ﬂtl)\ ) = 0= ml)\g _I_ (kl _I_ 052))\ — (mg — 051) — 0

L ml ml

make this negative

make this smaller than |kl+ao.|

4 4
> N\t o — —(kl + ) n \/(M + ) + ﬁml(mg — Czl)wmake this negative
be 2ml 2ml

* to stabilize: make both evs -ve (real part)
> choose any as > —kl, a3 > mg
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Stablllzmg . P via feedback (contd )

. o)) [ 0 L J7em] o],
IP \"\" F d ’Ug() — mg?rn—zcxl —len—lag_ _’Ug(t)_ + -%_ (t)

* eigenvalues of this determine stabillity
2> det ( m;_/\ﬂl —kl—ai—ml)« ) =4) => ml)\Q _I_ (kl _I_ (]'52))\ = (mg — C]fl) — 0

L ml ml
make this negative make this smaller than |kl+a.|
4 Y
> X _ _Ufl T 052) i \/(kl gN CEQ)Q -+ ﬁml(mg — al)H-make this negative
i le le

* to stabilize: make both evs -ve (real part)
> choose any as > —kl, a1 > mg . —

run MATLAB demo

iInverted pendulum w feedback root locus.m

= q
g

z =
- o0 T | —oeesenscooend OSSO CIE n

A -

. :
= ¥
? =]
0 g
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Feedback for Discrete-Time S.S.Rs
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Feedback for Discrete-Time S.S.Rs
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Feedback for Discrete-Time S.S.Rs

e system w feedback: z[t + 1) = (A — BKT)Z[t] + Bt

e stability still governed by the eigenvalues of A — BK*
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Feedback for Discrete-Time S.S.Rs

o system w feedback: [t + 1] = (A — BK1)Z[t] + Bilt]
e stability still governed by the eigenvalues of A — BK*

e stability (discr.) — magnitude of eigenvalues < 1
e different from the continuous case
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Example: Discrete-Time Feedback

0

o I|t+ 1| = 0

EE16B, Spring 2018, Lectures on Controllability and Feedback (Roychowdhury)

| -
(12_

T(t] +

.
_1_

ult]
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Example: Discrete-Time Feedback

. ] 1] . I} ult] s e N G
o #ft+1= |0 a4+ | uy —® e[

koxs|t]
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Example: Discrete-Time Feedback

) - I} ult] | Bt = e ol i) | T2
o ift+1)= | Mag Ofuy T T R

koxs|t]

ko |

w feedback k[
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Example: Discrete-Time Feedback

[t e I e N i F 1]
., m i To|t|

® char. poly.: A\? — (az — k2)A — (a1 — k1) =
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Example: Discrete-Time Feedback

) 0 11 o Hﬂ@ 1 Rl =l ) ] [0 {L:J
— 9] e To|t|
o I[t+1] o las Tlt] + || ult] ]
i - kazat] [5]
w feedback o) L [
- Chal' pOIy )\2 — (GLQ — kg))\ — ((11 — kl) — 0
ay — K 1
* roots: \j o = — ; 2 + §\/(a,z — ko)2 + 4(ag — kq)
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Example: Discrete-Time Feedback

) - I} ult] | Bt = e ol i) | T2
o ift+1)= | Mag Ofuy T T R

w feedback ot L [

- Chal' pOIy )\2 — (GLQ — kg))\ — ((11 — kl) — 0
ao — kg 1

¢ rOOtS: )\LQ — > - 5\/((12 — k2)2 —+ 4((1}1 — kl)
o easy to express k, k, interms of A, A\
kl — /\1)\2 — a1

kgzag—/\l—/\g
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Example: Discrete-Time Feedback

) - I} ult] | Bt = e ol i) | T2
o ift+1)= | Mag Ofuy T T R

w feedback ot L [

- Char pOIy )\2 — (GLQ — kg))\ — ((11 — kl) — 0
ao — kg 1

¢ rOOtS: )\LQ = > T 5\/((12 — k2)2 —+ 4((1}1 — kl)
o easy to express k, k, interms of A, A\
k1 = A1A2 —aq
o <—choose any A, and A, (eg, stable ones); set k, and k,

kgzag—/\l—)\g
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Example: Discrete-Time Feedback

] ) n) ult] | B -l A B | 2 [e
o it 1= [0 Llam+ Oluy —— 0 R

ag—kg 1

¢ rOOtS: )\LQ = > T 5\/((12 — ]{‘2)2 —+ 4((11 — kl)
o easy to express k, k, interms of A, A\
k1 = A1A2 —aq
o <—choose any A, and A, (eg, stable ones); set k, and k,

kg — a9 — /\1 — )\2
o If A Is complex: make sure A is the conjugate of A !

> otherwise, k./k /x./x, will have imaginary components
* which would be physically meaningless
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Another D-T. Feedback Example

o Ilt+ 1] =

.
_O 2_
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T|t| +

ult
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Another D-T. Feedback Example

.
_O 2_

T|t| +
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Another D-T. Feedback Example
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Another D-T. Feedback Example

.
_O 2_

° char. poly.: (1—ki —A)(2-A)=0

T|t| +

* roots: \i =1 — kq,

ult

w feedback

Ao = 2

EE16B, Spring 2018, Lectures on Controllability and Feedback (Roychowdhury)
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Another D-T. Feedback Example

|z +

ID]—LI
N

° char. poly.: (1—ki —A)(2-A)=0

does not depend on k, or k,; ie,

* roots: A1 =1—Fki, |A2=2 cannot be altered via feedback
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Another D-T. Feedback Example

Z[t] + | .| u[t] «=——not controllable

ID]—LI
N

° char. poly.: (1—ki —A)(2-A)=0

does not depend on k, or k,; ie,

* roots: A1 =1—Fki, |A2=2 cannot be altered via feedback
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Another D-T. Feedback Example

u[t] «+——not controllable

° char. poly.: (1—ki —A)(2-A)=0

does not depend on Kk, ork,; Ie,
e . p— — p—
roots: A1 l kl” cannot be altered via feedback

e suspicions (based on a few examples)

* controllable — can place all eigenvalues via careful feedback
* not controllable — might not be able to place all evs
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e Controllability

* controllability matrix must be full rank

> C-H Theorem
* examples: accelerating car (discrete), R-L1-L2 ckt

e Feedback

e controllable + unstable = useless
> uncontrollable + unstable = REALLY useless?

* feedback (from state to input) can stabilize (evs moved)
> inverted pendulum and other examples
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