EE16B, Spring 2018 UC Berkeley EECS

Maharbiz and Roychowdhury

Lectures 6B & 7A: Overview Slides

Controller Canonical Form Observability

• Recall prior example: $\vec{x}[t+1] = \begin{vmatrix} 0 & 1 \\ a_1 & a_2 \end{vmatrix} \vec{x}[t] + \begin{vmatrix} 0 \\ 1 \end{vmatrix} u[t]$

- Recall prior example: $\vec{x}[t+1] = \begin{bmatrix} 0 & 1 \\ a_1 & a_2 \end{bmatrix} \vec{x}[t] + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u[t]$
 - char. poly.: $\lambda^2 a_2\lambda a_1$: nice simple formula

- Recall prior example: $\vec{x}[t+1] = \begin{bmatrix} 0 & 1 \\ a_1 & a_2 \end{bmatrix} \vec{x}[t] + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u[t]$
 - char. poly.: $\lambda^2 a_2\lambda a_1$: nice simple formula
- Generalization: Controller Canonical Form (CCF)

$$\bullet \ A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & & \ddots & \ddots & & \vdots \\ \vdots & & & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & 0 & 1 \\ a_1 & a_2 & a_3 & \cdots & a_{n-1} & a_n \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

- Recall prior example: $\vec{x}[t+1] = \begin{vmatrix} 0 & 1 \\ a_1 & a_2 \end{vmatrix} \vec{x}[t] + \begin{vmatrix} 0 \\ 1 \end{vmatrix} u[t]$
 - char. poly.: $\lambda^2 a_2\lambda a_1$: nice simple formula
- Generalization: Controller Canonical Form (CCF)

$$\bullet \ A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & & \ddots & \ddots & & \vdots \\ \vdots & & & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & 0 & 1 \\ a_1 & a_2 & a_3 & \cdots & a_{n-1} & a_n \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

- char poly: $\lambda^n a_n \lambda^{n-1} a_{n-1} \lambda^{n-2} \dots a_2 \lambda a_1$
 - not difficult to show this (though a bit tedious)
 - apply determinant formula using minors to the last row

• System: $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + \vec{b}u(t)$, with (A, \vec{b}) in CCF

- System: $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + \vec{b}u(t)$, with (A, \vec{b}) in CCF
 - apply feedback \vec{k} : $A \mapsto A \vec{b}\vec{k}^T$

- System: $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + \vec{b}u(t)$, with (A, \vec{b}) in CCF
 - apply feedback \vec{k} : $A \mapsto A \vec{b}\vec{k}^T$

• char poly:
$$\lambda^n - (a_n - k_n)\lambda^{n-1} - (a_{n-1} - k_{n-1})\lambda^{n-2} - \cdots - (a_2 - k_2)\lambda - (a_1 - k_1)$$

- System: $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + \vec{b}u(t)$, with (A, \vec{b}) in CCF
 - apply feedback \vec{k} : $A \mapsto A \vec{b} \vec{k}^T$

• char poly:
$$\lambda^n - (a_n - k_n)\lambda^{n-1} - (a_{n-1} - k_{n-1})\lambda^{n-2} - \cdots - (a_2 - k_2)\lambda - (a_1 - k_1)$$

its roots are the eigenvalues that determine stability

• Suppose you want $\lambda_1, \lambda_2, \ldots, \lambda_n$ to be the roots

- Suppose you want $\lambda_1, \lambda_2, \ldots, \lambda_n$ to be the roots
 - the char. poly. should equal: $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$
 - → (why?)

- Suppose you want $\lambda_1, \lambda_2, \ldots, \lambda_n$ to be the roots
 - the char. poly. should equal: $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$
 - → (why?)
- Expand out $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n) \equiv \prod_{i=1}^n (\lambda \lambda_i)$

- Suppose you want $\lambda_1, \lambda_2, \ldots, \lambda_n$ to be the roots
 - the char. poly. should equal: $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$
 - → (why?)
- Expand out $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n) \equiv \prod_{i=1}^{n} (\lambda \lambda_i)$

•
$$\prod_{i=1}^{n} (\lambda - \lambda_i) = \lambda^n - (\lambda_1 + \lambda_2 + \dots + \lambda_n) \lambda^{n-1}$$

$$+ \left[\lambda_1 (\lambda_2 + \lambda_3 + \dots + \lambda_n) + \lambda_2 (\lambda_3 + \lambda_4 + \dots + \lambda_n) + \dots + \lambda_{n-1} \lambda_n \right] \lambda^{n-2}$$

$$+ \dots + \left[(-1)^n \lambda_1 \lambda_2 \dots \lambda_n \right]$$

- Suppose you want $\lambda_1, \lambda_2, \ldots, \lambda_n$ to be the roots
 - the char. poly. should equal: $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$
 - → (why?)
- Expand out $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n) \equiv \prod_{i=1}^{n} (\lambda \lambda_i)$ • $\prod_{i=1}^{n} (\lambda - \lambda_i) = \lambda^n \frac{-(\lambda_1 + \lambda_2 + \cdots + \lambda_n)}{-(\lambda_1 + \lambda_2 + \cdots + \lambda_n)} \lambda^{n-1}$

•
$$\prod_{i=1}^{n} (\lambda - \lambda_i) = \lambda^n - (\lambda_1 + \lambda_2 + \dots + \lambda_n) \lambda^{n-1}$$

$$+ \left[\lambda_1 (\lambda_2 + \lambda_3 + \dots + \lambda_n) + \lambda_2 (\lambda_3 + \lambda_4 + \dots + \lambda_n) + \dots + \lambda_{n-1} \lambda_n \right] \lambda^{n-2}$$

$$+ \dots + \left[(-1)^n \lambda_1 \lambda_2 \dots \lambda_n \right]$$

- Suppose you want $\lambda_1, \lambda_2, \ldots, \lambda_n$ to be the roots
 - the char. poly. should equal: $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$
 - → (why?)
- Expand out $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n) \equiv \prod_{i=1}^{n} (\lambda \lambda_i)$ • $\prod_{i=1}^{n} (\lambda - \lambda_i) = \lambda^n \frac{-(\lambda_1 + \lambda_2 + \cdots + \lambda_n)}{-(\lambda_1 + \lambda_2 + \cdots + \lambda_n)} \lambda^{n-1}$

•
$$\prod_{i=1}^{n} (\lambda - \lambda_i) = \lambda^n - (\lambda_1 + \lambda_2 + \dots + \lambda_n) \lambda^{n-1}$$

$$+ \left[\lambda_1 (\lambda_2 + \lambda_3 + \dots + \lambda_n) + \lambda_2 (\lambda_3 + \lambda_4 + \dots + \lambda_n) + \dots + \lambda_{n-1} \lambda_n \right] \lambda^{n-2}$$

$$+ \dots + (-1)^n \lambda_1 \lambda_2 \dots \lambda_n$$

- Suppose you want $\lambda_1, \lambda_2, \ldots, \lambda_n$ to be the roots
 - the char. poly. should equal: $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$
 - → (why?)
- Expand out $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n) \equiv \prod_{i=1}^{n} (\lambda \lambda_i)$ • $\prod_{i=1}^{n} (\lambda - \lambda_i) = \lambda^n \frac{-(\lambda_1 + \lambda_2 + \cdots + \lambda_n)}{-(\lambda_1 + \lambda_2 + \cdots + \lambda_n)} \lambda^{n-1}$

•
$$\prod_{i=1}^{n} (\lambda - \lambda_i) = \lambda^n - (\lambda_1 + \lambda_2 + \dots + \lambda_n) \lambda^{n-1}$$

$$+ \left[\lambda_1 (\lambda_2 + \lambda_3 + \dots + \lambda_n) + \lambda_2 (\lambda_3 + \lambda_4 + \dots + \lambda_n) + \dots + \lambda_{n-1} \lambda_n \right] \lambda^{n-2}$$

$$+ \dots + \left[(-1)^n \lambda_1 \lambda_2 \dots \lambda_n \right] \gamma_1$$

- Suppose you want $\lambda_1, \lambda_2, \ldots, \lambda_n$ to be the roots
 - the char. poly. should equal: $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$
 - → (why?)
- Expand out $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n) \equiv \prod_{i=1}^{n} (\lambda \lambda_i)$

•
$$\prod_{i=1}^{n} (\lambda - \lambda_i) = \lambda^n - (\lambda_1 + \lambda_2 + \dots + \lambda_n) \lambda^{n-1}$$

$$+ \left[\lambda_1 (\lambda_2 + \lambda_3 + \dots + \lambda_n) + \lambda_2 (\lambda_3 + \lambda_4 + \dots + \lambda_n) + \dots + \lambda_{n-1} \lambda_n \right] \lambda^{n-2}$$

$$+ \dots + \left[(-1)^n \lambda_1 \lambda_2 \dots \lambda_n \right]$$

$$+ \dots + \left[(-1)^n \lambda_1 \lambda_2 \dots \lambda_n \right]$$

• equate coefficients against $\lambda^n - (a_n - k_n)\lambda^{n-1} - (a_{n-1} - k_{n-1})\lambda^{n-2} - \cdots - (a_2 - k_2)\lambda - (a_1 - k_1)$

- Suppose you want $\lambda_1, \lambda_2, \ldots, \lambda_n$ to be the roots
 - the char. poly. should equal: $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$
 - → (why?)
- Expand out $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n) \equiv \prod_{i=1}^{n} (\lambda \lambda_i)$

• equate coefficients against $\lambda^n - (a_n - k_n)\lambda^{n-1} - (a_{n-1} - k_{n-1})\lambda^{n-2}$ $a_n - k_n = -\gamma_n$ $-\cdots - (a_2 - k_2)\lambda - (a_1 - k_1)$

$$a_{n-1} - k_{n-1} = -\gamma_{n-1}$$

 $a_1 - k_1 = -\gamma_1$ \vdots $a_1 - k_1 = -\gamma_1$

- Suppose you want $\lambda_1, \lambda_2, \ldots, \lambda_n$ to be the roots
 - the char. poly. should equal: $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$
 - → (why?)
- Expand out $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n) \equiv \prod_{i=1}^{n} (\lambda \lambda_i)$

•
$$\prod_{i=1}^{n} (\lambda - \lambda_i) = \lambda^n - (\lambda_1 + \lambda_2 + \dots + \lambda_n) \lambda^{n-1}$$
+
$$\left[\lambda_1(\lambda_2 + \lambda_3 + \dots + \lambda_n) + \lambda_2(\lambda_3 + \lambda_4 + \dots + \lambda_n) + \lambda_2(\lambda_3 + \lambda_4 + \dots + \lambda_n) + \dots + \lambda_{n-1} \lambda_n\right] \lambda^{n-2}$$
+
$$\dots + (-1)^n \lambda_1 \lambda_2 \dots \lambda_n \xrightarrow{\gamma_1}$$

• equate coefficients against $\lambda^n - (a_n - k_n)\lambda^{n-1} - (a_{n-1} - k_{n-1})\lambda^{n-2}$

$$\begin{array}{c} a_{n} - k_{n} = -\gamma_{n} \\ a_{n-1} - k_{n-1} = -\gamma_{n-1} \\ \vdots \\ a_{1} - k_{1} = -\gamma_{1} \end{array} \Rightarrow \begin{cases} k_{n} = \gamma_{n} - a_{n} \\ k_{n-1} = \gamma_{n-1} - a_{n-1} \\ \vdots \\ k_{1} = \gamma_{1} - a_{1} \end{cases}$$

 $-\cdots - (a_2-k_2)\lambda - (a_1-k_1)$

- Suppose you want $\lambda_1, \lambda_2, \ldots, \lambda_n$ to be the roots
 - the char. poly. should equal: $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$
 - → (why?)
- Expand out $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n) \equiv \prod_{i=1}^{n} (\lambda \lambda_i)$

•
$$\prod_{i=1}^{n} (\lambda - \lambda_i) = \lambda^n - (\lambda_1 + \lambda_2 + \dots + \lambda_n) \lambda^{n-1}$$

$$+ \left[\lambda_1 (\lambda_2 + \lambda_3 + \dots + \lambda_n) + \lambda_2 (\lambda_3 + \lambda_4 + \dots + \lambda_n) + \dots + \lambda_{n-1} \lambda_n \right] \lambda^{n-2}$$

$$+ \dots + \left[(-1)^n \lambda_1 \lambda_2 \dots \lambda_n \right] \frac{\gamma_{n-1}}{\gamma_{n-1}}$$

• equate coefficients against $\lambda^n - (a_n - k_n)\lambda^{n-1} - (a_{n-1} - k_{n-1})\lambda^{n-2}$

$$a_n - k_n = -\gamma_n$$

$$a_{n-1} - k_{n-1} = -\gamma_{n-1}$$

$$\vdots$$

$$a_1 - k_1 = -\gamma_1$$

$$k_n = \gamma_n - a_n$$

$$k_{n-1} = \gamma_{n-1} - a_{n-1}$$

$$\vdots$$

$$k_1 = \gamma_1 - a_1$$

$$-\cdots - (a_2 - k_2)\lambda - (a_1 - k_1)$$

$$\vdots$$

$$\text{these feedback coeffs will place the eigenvalues at the desired locations}$$

- Suppose you want $\lambda_1, \lambda_2, \ldots, \lambda_n$ to be the roots
 - the char. poly. should equal: $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$
 - → (why?)
- Expand out $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n) \equiv \prod_{i=1}^{n} (\lambda \lambda_i)$

•
$$\prod_{i=1}^{n} (\lambda - \lambda_i) = \lambda^n - (\lambda_1 + \lambda_2 + \dots + \lambda_n) \lambda^{n-1}$$
+
$$\left[\lambda_1(\lambda_2 + \lambda_3 + \dots + \lambda_n) + \lambda_2(\lambda_3 + \lambda_4 + \dots + \lambda_n) + \lambda_2(\lambda_3 + \lambda_4 + \dots + \lambda_n) + \dots + \lambda_{n-1} \lambda_n\right] \lambda^{n-2}$$
+
$$\dots + (-1)^n \lambda_1 \lambda_2 \dots \lambda_n \xrightarrow{\gamma_1}$$

• equate coefficients against $\lambda^n - (a_n - k_n)\lambda^{n-1} - (a_{n-1} - k_{n-1})\lambda^{n-2}$

$$a_{n} - k_{n} = -\gamma_{n}$$

$$a_{n-1} - k_{n-1} = -\gamma_{n-1}$$

$$\vdots$$

$$a_{1} - k_{1} = -\gamma_{1}$$

$$\Rightarrow \begin{cases} k_n = \gamma_n - a_n \\ k_{n-1} = \gamma_{n-1} - a_{n-1} \end{cases}$$

$$\vdots$$

$$k_1 = \gamma_1 - a_1$$

$$-\cdots - (a_2-k_2)\lambda - (a_1-k_1)$$

these feedback coeffs will place the eigenvalues at the desired locations

We just showed: if a system is in CCF, feedback can move its eigenvalues to any desired locations

•
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

•
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Rightarrow A - \vec{b}\vec{k}^T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 - k_1 & 2 - k_2 & 3 - k_3 \end{bmatrix}$$

•
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Rightarrow A - \vec{b}\vec{k}^T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 - k_1 & 2 - k_2 & 3 - k_3 \end{bmatrix}$$

• char. poly.: $\lambda^3 - (3-k_3)\lambda^2 - (2-k_2)\lambda - (1-k_1)$

•
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Rightarrow A - \vec{b}\vec{k}^T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 - k_1 & 2 - k_2 & 3 - k_3 \end{bmatrix}$$

- char. poly.: $\lambda^3 (3-k_3)\lambda^2 (2-k_2)\lambda (1-k_1)$
- desired char. poly.: $(\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3)$

•
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Rightarrow A - \vec{b}\vec{k}^T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 - k_1 & 2 - k_2 & 3 - k_3 \end{bmatrix}$$

- char. poly.: $\lambda^3 (3-k_3)\lambda^2 (2-k_2)\lambda (1-k_1)$
- desired char. poly.: $(\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3)$
 - \rightarrow say we want: $\lambda_1 = \lambda_2 = \lambda_3 = 0$

•
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Rightarrow A - \vec{b}\vec{k}^T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 - k_1 & 2 - k_2 & 3 - k_3 \end{bmatrix}$$

- char. poly.: $\lambda^3 (3-k_3)\lambda^2 (2-k_2)\lambda (1-k_1)$
- desired char. poly.: $(\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3)$
 - say we want: $\lambda_1 = \lambda_2 = \lambda_3 = 0 \implies (\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3) \equiv \lambda^3$

•
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Rightarrow A - \vec{b}\vec{k}^T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 - k_1 & 2 - k_2 & 3 - k_3 \end{bmatrix}$$

- char. poly.: $\lambda^3 (3-k_3)\lambda^2 (2-k_2)\lambda (1-k_1)$
- desired char. poly.: $(\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3)$
 - ⇒ say we want: $\lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow (\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3) \equiv \lambda^3$
 - then $k_3 = 3, k_2 = 2, k_1 = 1$

•
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Rightarrow A - \vec{b}\vec{k}^T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 - k_1 & 2 - k_2 & 3 - k_3 \end{bmatrix}$$

- char. poly.: $\lambda^3 (3-k_3)\lambda^2 (2-k_2)\lambda (1-k_1)$
- desired char. poly.: $(\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3)$
 - ⇒ say we want: $\lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow (\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3) \equiv \lambda^3$
 - then $k_3 = 3, k_2 = 2, k_1 = 1$
 - \rightarrow or, if we want: $\lambda_1 = -1, \lambda_2 = -2, \lambda_3 = -3$

•
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Rightarrow A - \vec{b}\vec{k}^T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 - k_1 & 2 - k_2 & 3 - k_3 \end{bmatrix}$$

- char. poly.: $\lambda^3 (3-k_3)\lambda^2 (2-k_2)\lambda (1-k_1)$
- desired char. poly.: $(\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3)$
 - ⇒ say we want: $\lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow (\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3) \equiv \lambda^3$
 - then $k_3 = 3, k_2 = 2, k_1 = 1$
 - \rightarrow or, if we want: $\lambda_1 = -1, \lambda_2 = -2, \lambda_3 = -3$
 - $(\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3) \equiv \lambda^3 + 6\lambda^2 + 11\lambda + 6$

•
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Rightarrow A - \vec{b}\vec{k}^T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 - k_1 & 2 - k_2 & 3 - k_3 \end{bmatrix}$$

- char. poly.: $\lambda^3 (3-k_3)\lambda^2 (2-k_2)\lambda (1-k_1)$
- desired char. poly.: $(\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3)$
 - ⇒ say we want: $\lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow (\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3) \equiv \lambda^3$
 - then $k_3 = 3, k_2 = 2, k_1 = 1$
 - \rightarrow or, if we want: $\lambda_1 = -1, \lambda_2 = -2, \lambda_3 = -3$
 - $(\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3) \equiv \lambda^3 + 6\lambda^2 + 11\lambda + 6$

$$-(3 - k_3) = 6$$
• $-(2 - k_2) = 11$
 $-(1 - k_1) = 6$

•
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Rightarrow A - \vec{b}\vec{k}^T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 - k_1 & 2 - k_2 & 3 - k_3 \end{bmatrix}$$

- char. poly.: $\lambda^3 (3-k_3)\lambda^2 (2-k_2)\lambda (1-k_1)$
- desired char. poly.: $(\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3)$
 - ⇒ say we want: $\lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow (\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3) \equiv \lambda^3$
 - then $k_3 = 3, k_2 = 2, k_1 = 1$
 - \rightarrow or, if we want: $\lambda_1 = -1, \lambda_2 = -2, \lambda_3 = -3$
 - $(\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3) \equiv \lambda^3 + 6\lambda^2 + 11\lambda + 6$

$$-(3 - k_3) = 6$$

$$-(2 - k_2) = 11 \Rightarrow \begin{cases} k_3 = 9 \\ k_2 = 13 \\ k_1 = 7 \end{cases}$$

- But CCF seems a very special/restrictive form ...
 - ... key question: what systems are in CCF?

- But CCF seems a very special/restrictive form ...
 - ... key question: what systems are in CCF?
- A: any controllable system can be converted to CCF!

- But CCF seems a very special/restrictive form ...
 - ... key question: what systems are in CCF?
- A: any controllable system can be converted to CCF!
- Here's how you do it:
 - 1. Given any state-space system: $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + \vec{b}u(t)$

- But CCF seems a very special/restrictive form ...
 - ... key question: what systems are in CCF?
- A: any controllable system can be converted to CCF!
- Here's how you do it:
 - 1. Given any state-space system: $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + \vec{b}u(t)$
 - **2.** Form its controllability matrix: $R_n \triangleq \left[\vec{b}, A\vec{b}, A^2\vec{b}, \cdots, A^{n-1}\vec{b} \right]$

- But CCF seems a very special/restrictive form ...
 - ... key question: what systems are in CCF?
- A: any controllable system can be converted to CCF!
- Here's how you do it:
 - 1. Given any state-space system: $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + \vec{b}u(t)$
 - **2.** Form its controllability matrix: $R_n \triangleq \left[\vec{b}, A\vec{b}, A^2\vec{b}, \cdots, A^{n-1}\vec{b} \right]$

- But CCF seems a very special/restrictive form ...
 - ... key question: what systems are in CCF?
- A: any controllable system can be converted to CCF!
- Here's how you do it:
 - 1. Given any state-space system: $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + \vec{b}u(t)$
 - **2.** Form its controllability matrix: $R_n \triangleq \left[\vec{b}, A\vec{b}, A^2\vec{b}, \cdots, A^{n-1}\vec{b} \right]$
 - 3. Compute its inverse: R_n^{-1}

- But CCF seems a very special/restrictive form ...
 - ... key question: what systems are in CCF?
- A: any controllable system can be converted to CCF!
- Here's how you do it:
 - 1. Given any state-space system: $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + \vec{b}u(t)$
 - **2.** Form its controllability matrix: $R_n \triangleq \left[\vec{b}, A\vec{b}, A^2\vec{b}, \cdots, A^{n-1}\vec{b} \right]$
 - 3. Compute its inverse: R_n^{-1}
 - **4.** Grab the <u>last row</u> of R_n^{-1} : call it \vec{q}^T

- But CCF seems a very special/restrictive form ...
 - ... key question: what systems are in CCF?
- A: any controllable system can be converted to CCF!
- Here's how you do it:
 - 1. Given any state-space system: $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + \vec{b}u(t)$
 - **2.** Form its controllability matrix: $R_n \triangleq \left[\vec{b}, A\vec{b}, A^2\vec{b}, \cdots, A^{n-1}\vec{b} \right]$
 - 3. Compute its inverse: R_n^{-1}

4. Grab the <u>last row</u> of R_n^{-1} : call it \vec{q}^T

•
$$R_n^{-1} = \begin{bmatrix} \hline \\ \hline \\ \vdots \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{matrix}$$
 ; (\vec{q} is a col. vector; \vec{q}^T is a row vector)

5. Form the basis transformation matrix $T \triangleq \begin{bmatrix} \longleftarrow & \vec{q}^T & \longrightarrow \\ \longleftarrow & \vec{q}^T A & \longrightarrow \\ \longleftarrow & \vec{q}^T A^2 & \longrightarrow \\ & \vdots & \\ \longleftarrow & \vec{q}^T A^{n-1} & \longrightarrow \end{bmatrix}$

T will be full rank, hence non-singular and invertible

- 5. Form the basis transformation matrix $T \triangleq$
- 6. Define $\vec{z}(t) = T\vec{x}(t) \Leftrightarrow \vec{x}(t) = T^{-1}\vec{z}(t)$

T will be full rank, hence non-singular and invertible

- 5. Form the basis transformation matrix $T \triangleq$
- 6. Define $\vec{z}(t) = T\vec{x}(t) \Leftrightarrow \vec{x}(t) = T^{-1}\vec{z}(t)$
- 7. Write the system in terms of $\vec{z}(t)$:

$$\frac{d}{dt}\vec{z}(t) = \underbrace{TAT^{-1}}_{\hat{A}}\vec{z}(t) + \underbrace{T\vec{b}}_{\hat{b}}u(t)$$

$$\vec{x}(t) = T^{-1}\vec{z}(t)$$

T will be full rank, hence non-singular and invertible

- 5. Form the basis transformation matrix $T \triangleq$
- 6. Define $\vec{z}(t) = T\vec{x}(t) \Leftrightarrow \vec{x}(t) = T^{-1}\vec{z}(t)$
- 7. Write the system in terms of $\vec{z}(t)$:

similarity transformation

T will be full rank, hence non-singular and invertible

- 5. Form the basis transformation matrix $T \triangleq$
- 6. Define $\vec{z}(t) = T\vec{x}(t) \Leftrightarrow \vec{x}(t) = T^{-1}\vec{z}(t)$
- 7. Write the system in terms of $\vec{z}(t)$:

foriginal system: $u(t) \mapsto \vec{x}(t)$ is the same

equivalent to the

sımılarıty transformation

T will be full rank, hence non-singular and invertible

- 5. Form the basis transformation matrix $T \triangleq$
- 6. Define $\vec{z}(t) = T\vec{x}(t) \Leftrightarrow \vec{x}(t) = T^{-1}\vec{z}(t)$
- 7. Write the system in terms of $\vec{z}(t)$:

$$\frac{d}{dt}\vec{z}(t) = \underbrace{TAT^{-1}}_{\hat{A}}\vec{z}(t) + \underbrace{T\vec{b}}_{\hat{b}}\mathbf{u}(t)$$

$$\vec{x}(t) = T^{-1}\vec{z}(t)$$

8. (\hat{A}, \vec{b}) will be in CCF!

equivalent to the original system: $u(t) \mapsto \vec{x}(t)$ is the same

similarity transformation

T will be full rank, hence non-singular and invertible

- 5. Form the basis transformation matrix $T \triangleq$
- 6. Define $\vec{z}(t) = T\vec{x}(t) \Leftrightarrow \vec{x}(t) = T^{-1}\vec{z}(t)$
- 7. Write the system in terms of $\vec{z}(t)$:

$$\frac{d}{dt}\vec{z}(t) = \underbrace{TAT^{-1}}_{\hat{A}}\vec{z}(t) + \underbrace{T\vec{b}}_{\hat{b}} u(t)$$
 equivalent to the original system:
$$u(t) \mapsto \vec{x}(t)$$
 is the same
$$\vec{x}(t) = T^{-1}\vec{z}(t)$$
 similarity

- 8. (\hat{A}, \vec{b}) will be in CCF!
- Proof: see the handwritten notes

transformation

position: p, velocity: v, accel: a,

$$\frac{dp_2}{dt} = v_2(t)$$

$$\frac{dv_2}{dt} = a_2(t)$$

$$\frac{dv_2}{dt} = a_2(t)$$

$$\frac{dp_1}{dt} = v_1(t)$$

$$\frac{dv_1}{dt} = a_1(t)$$

$$\frac{d(p_1 - p_2)}{dt} = v_1(t) - v_2(t)$$

$$\frac{d(v_1 - v_2)}{dt} = a_1(t) - a_2(t)$$

$$\frac{dx_1}{dt} = x_2(t)$$

$$\frac{dx_2}{dt} = u(t)$$

$$\frac{dx_1}{dt} = x_2(t)$$

$$\frac{dx_2}{dt} = u(t)$$

$$\Rightarrow \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$\begin{split} \frac{dp_2}{dt} &= v_2(t) & \mathbf{x_1(t)} = \mathbf{p_1(t)} - \mathbf{p_2(t)} - \delta & \frac{dp_1}{dt} = v_1(t) \\ \frac{dv_2}{dt} &= a_2(t) & \frac{\mathbf{x_1(t)} + \delta}{dt} & \frac{dv_1}{dt} = a_1(t) \\ & \frac{d(p_1 - p_2)}{dt} = v_1(t) - v_2(t) & \text{call this } \mathbf{x_2(t)} \\ & \frac{d(v_1 - v_2)}{dt} = a_1(t) - a_2(t) & \text{call this u(t), the input} \end{split}$$

$$\frac{dx_1}{dt} = x_2(t)$$

$$\Rightarrow \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}} \underbrace{\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}} + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}} u(t)$$
 BIBO UNSTABLE (a)

• introduce state feedback: $A \mapsto \begin{bmatrix} 0 & 1 \\ -k_1 & -k_2 \end{bmatrix}$

$$A \mapsto \begin{vmatrix} 0 & 1 \\ -k_1 & -k_2 \end{vmatrix}$$

• introduce state feedback:

- introduce state feedback:
- eigenvalues:
 - $\lambda_{1,2} = -\frac{k_2}{2} \pm \frac{1}{2} \sqrt{k_2^2 4k_1}$

- introduce state feedback:
- eigenvalues:

•
$$\lambda_{1,2} = -\frac{k_2}{2} \pm \frac{1}{2} \sqrt{k_2^2 - 4k_1}$$

- stabilization
 - $k_2 > 0$, $k_1 > 0$ ensures eigenvalues have -ve real parts

- introduce state feedback:
- eigenvalues:

•
$$\lambda_{1,2} = -\frac{k_2}{2} \pm \frac{1}{2} \sqrt{k_2^2 - 4k_1}$$

- stabilization
 - $k_2 > 0$, $k_1 > 0$ ensures eigenvalues have -ve real parts
- small errors in the acceleration u(t) → only small changes to the desired distance δ
 - see handwritten notes for details

Controllable Systems can be Stabilized

- So far, we have shown that:
 - CCF systems can be stabilized by feedback
 - Controllable systems can be put in CCF

- So far, we have shown that:
 - CCF systems can be stabilized by feedback
 - Controllable systems can be put in CCF
- Controllable systs. can be stabilized by feedback

- So far, we have shown that:
 - CCF systems can be stabilized by feedback
 - Controllable systems can be put in CCF
- Controllable systs. can be stabilized by feedback
 - but not necessary to first convert to CCF to stabilize

- So far, we have shown that:
 - CCF systems can be stabilized by feedback
 - Controllable systems can be put in CCF
- Controllable systs. can be stabilized by feedback
 - but not necessary to first convert to CCF to stabilize
 - ightharpoonup just write out the char. poly. of $A-ec{b}ec{k}^T$ directly
 - will be a linear expression in k₁, k₂, ..., k_n

- So far, we have shown that:
 - CCF systems can be stabilized by feedback
 - Controllable systems can be put in CCF
- Controllable systs. can be stabilized by feedback
 - but not necessary to first convert to CCF to stabilize
 - ightharpoonup just write out the char. poly. of $A-ec{b}ec{k}^T$ directly
 - will be a linear expression in k₁, k₂, ..., k_n
 - match coeffs. of λ^k against those of $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$
 - will obtain a linear system of equations in \vec{k} : $M\vec{k}=\vec{r}$

- So far, we have shown that:
 - CCF systems can be stabilized by feedback
 - Controllable systems can be put in CCF
- Controllable systs. can be stabilized by feedback
 - but not necessary to first convert to CCF to stabilize
 - ightharpoonup just write out the char. poly. of $A-ec{b}ec{k}^T$ directly
 - will be a linear expression in k₁, k₂, ..., k_n
 - match coeffs. of λ^k against those of $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$
 - will obtain a linear system of equations in \vec{k} : $\vec{M}\vec{k} = \vec{r}$

determined by the entries of A, b, and by $\lambda_1, \ldots, \lambda_n$

- So far, we have shown that:
 - CCF systems can be stabilized by feedback
 - Controllable systems can be put in CCF
- Controllable systs. can be stabilized by feedback
 - but not necessary to first convert to CCF to stabilize
 - ightharpoonup just write out the char. poly. of $A-ec{b}ec{k}^T$ directly
 - will be a linear expression in k₁, k₂, ..., k_n
 - match coeffs. of λ^k against those of $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$
 - will obtain a linear system of equations in \vec{k} : $M\vec{k}=\vec{r}$
 - ⇒ solve $M\vec{k} = \vec{r}$ for \vec{k} (usually numerically) determined by the entries of A, b, and by $\lambda_1, ..., \lambda_n$

- suppose we have just a SCALAR output y[t]
 - i.e., don't have access to all of $\vec{x}[t]$ for feedback

- suppose we have just a SCALAR output y[t]
 - i.e., don't have access to all of $\vec{x}[t]$ for feedback
 - can we recover $\vec{x}[t]$ just from observations of y[t]?

- suppose we have just a SCALAR output y[t]
 - i.e., don't have access to all of $\vec{x}[t]$ for feedback
 - can we recover $\vec{x}[t]$ just from observations of y[t]?

- suppose we have just a SCALAR output y[t]
 - i.e., don't have access to all of $\vec{x}[t]$ for feedback
 - can we recover $\vec{x}[t]$ just from observations of y[t]?

- suppose we have just a SCALAR output y[t]
 - i.e., don't have access to all of $\vec{x}[t]$ for feedback
 - can we recover $\vec{x}[t]$ just from observations of y[t]?

- suppose we have just a SCALAR output y[t]
 - i.e., don't have access to all of $\vec{x}[t]$ for feedback
 - can we recover $\vec{x}[t]$ just from observations of y[t]?

- More precisely:
 - suppose we know: A, \vec{b} , \vec{c}^T and u[t]
 - → and can measure y(t)
 - can we recover $\vec{x}[t]$?

- suppose we have just a SCALAR output y[t]
 - i.e., don't have access to all of $\vec{x}[t]$ for feedback
 - can we recover $\vec{x}[t]$ just from observations of y[t]?

- More precisely:
 - suppose we know: A, \vec{b} , \vec{c}^T and u[t]
 - → and can measure y(t)
 - can we recover $\vec{x}[t]$?

__If yes: the system is called OBSERVABLE

• We know that
$$\vec{x}[t] = A^{t-1} \vec{x}[0] + \sum_{i=1}^{s} A^{t-i} \vec{b}u[i-1]$$

we know (or can calculate) these

• We know that
$$\vec{x}[t] = A^{t-1}\vec{x}[0] + \sum_{i=1}^{t} A^{t-i}\vec{b}u[i-1]$$

we know (or can calculate) these

• We know that
$$\vec{x}[t] = A^{t-1} \vec{x}[0] + \sum_{i=1}^t A^{t-i} \vec{b}u[i-1]$$
 the only unknown

the only unknown

we know (or can calculate) these

• We know that
$$\vec{x}[t] = A^{t-1} \vec{x}[0] + \sum_{i=1}^{t} A^{t-i} \vec{b}u[i-1]$$

Suppose u[t]=0

the only unknown

we know (or can calculate) these

• We know that
$$\vec{x}[t] = A^{t-1} \vec{x}[0] + \sum_{i=1}^{t} A^{t-i} \vec{b}u[i-1]$$

- Suppose u[t]=0
 - then $\vec{x}[t] = A^{t-1}\vec{x}[0]$. Write out $y[t] = \vec{c}^T\vec{x}[t]$:

$$y[0] = \vec{c}^T \vec{x}[0]$$

$$y[1] = \vec{c}^T \vec{x}[1] = \vec{c}^T A \vec{x}[0]$$

$$y[2] = \vec{c}^T \vec{x}[2] = \vec{c}^T A^2 \vec{x}[0]$$

$$\vdots$$

$$y[n-1] = \vec{c}^T \vec{x}[2] = \vec{c}^T A^{n-1} \vec{x}[0]$$

the only unknown

we know (or can calculate) these

• We know that
$$\vec{x}[t] = A^{t-1} \vec{x}[0] + \sum_{i=1}^{t} A^{t-i} \vec{b}u[i-1]$$

- Suppose u[t]=0
 - then $\vec{x}[t] = A^{t-1}\vec{x}[0]$. Write out $y[t] = \vec{c}^T\vec{x}[t]$:

$$y[0] = \vec{c}^T \vec{x}[0]$$

$$y[1] = \vec{c}^T \vec{x}[1] = \vec{c}^T A \vec{x}[0]$$

$$y[2] = \vec{c}^T \vec{x}[2] = \vec{c}^T A^2 \vec{x}[0]$$

$$\vdots$$

$$y[n-1] = \vec{c}^T \vec{x}[2] = \vec{c}^T A^{n-1} \vec{x}[0]$$

the only unknown

we know (or can calculate) these

• We know that
$$\vec{x}[t] = A^{t-1} \vec{x}[0] + \sum_{i=1}^{t} A^{t-i} \vec{b}u[i-1]$$

- Suppose u[t]=0
 - then $\vec{x}[t] = A^{t-1}\vec{x}[0]$. Write out $y[t] = \vec{c}^T\vec{x}[t]$:

$$y[0] = \vec{c}^T \vec{x}[0]$$

$$y[1] = \vec{c}^T \vec{x}[1] = \vec{c}^T A \vec{x}[0]$$

$$y[2] = \vec{c}^T \vec{x}[2] = \vec{c}^T A^2 \vec{x}[0]$$

$$\vdots$$

$$y[n-1] = \vec{c}^T \vec{x}[2] = \vec{c}^T A^{n-1} \vec{x}[0]$$

observability matrix (nxn)

the only unknown

we know (or can calculate) these

• We know that
$$\vec{x}[t] = A^{t-1} \vec{x}[0] + \sum_{i=1}^{t} A^{t-i} \vec{b}u[i-1]$$

- Suppose u[t]=0
 - then $\vec{x}[t] = A^{t-1}\vec{x}[0]$. Write out $y[t] = \vec{c}^T\vec{x}[t]$:

$$y[0] = \vec{c}^T \vec{x}[0]$$

$$y[1] = \vec{c}^T \vec{x}[1] = \vec{c}^T A \vec{x}[0]$$

$$y[2] = \vec{c}^T \vec{x}[2] = \vec{c}^T A^2 \vec{x}[0]$$

$$\vdots$$

$$y[n-1] = \vec{c}^T \vec{x}[2] = \vec{c}^T A^{n-1} \vec{x}[0]$$

observability matrix (nxn)

must be full-rank/non-singular/invertible to recover $\vec{x}(t)$ uniquely from measurements of y(t)

 $\begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}$

•
$$\begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}$$

this is a "rotation matrix" - call it A

 $\begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}$

this is a "rotation matrix" - call it A

•
$$\begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}$$
 this is a "rotation matrix" - call it A

•
$$\begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}$$
 this is a "rotation matrix" - call it A

•
$$\begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}$$
 this is a "rotation matrix" - call it A

•
$$\begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}$$
 this is a "rotation matrix" - call it A

•
$$\begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}$$
 this is a "rotation matrix" - call it A

Each application of A rotates

by θ

$$\begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix},$$

$$\bullet \begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}, \quad y[t] = x_1[t] = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{\vec{c}^T} \vec{x}[t]$$

• Observability matrix: $O \triangleq \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \cos(\theta) & -\sin(\theta) \end{bmatrix}$

$$\bullet \begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}, \quad y[t] = x_1[t] = \begin{bmatrix} 1 & 0 \end{bmatrix} \vec{x}[t]$$

- Observability matrix: $O \triangleq \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \cos(\theta) & -\sin(\theta) \end{bmatrix}$
- Determinant of O: $det(O) = -\sin(\theta)$

$$\bullet \begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}, \quad y[t] = x_1[t] = \begin{bmatrix} 1 & 0 \end{bmatrix} \vec{x}[t]$$

- Observability matrix: $O \triangleq \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \cos(\theta) & -\sin(\theta) \end{bmatrix}$
- Determinant of O: $det(O) = -\sin(\theta)$
 - non-zero if $\theta \neq 0, \pi, 2\pi, \cdots, i\pi \rightarrow$ observable

$$\bullet \begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}, \quad y[t] = x_1[t] = \begin{bmatrix} 1 & 0 \end{bmatrix} \vec{x}[t]$$

- Observability matrix: $O \triangleq \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \cos(\theta) & -\sin(\theta) \end{bmatrix}$
- Determinant of O: $det(O) = -\sin(\theta)$
 - non-zero if $\theta \neq 0, \pi, 2\pi, \cdots, i\pi \rightarrow$ observable
 - 0 if $\theta = i\pi \rightarrow$ not observable

$$\bullet \begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}, \quad y[t] = x_1[t] = \begin{bmatrix} 1 & 0 \end{bmatrix} \vec{x}[t]$$

- Observability matrix: $O \triangleq \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \cos(\theta) & -\sin(\theta) \end{bmatrix}$
- Determinant of O: $det(O) = -\sin(\theta)$
 - non-zero if $\theta \neq 0, \pi, 2\pi, \cdots, i\pi \rightarrow$ observable
 - 0 if $\theta = i\pi$ \rightarrow not observable

$$\bullet \begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}, \quad y[t] = x_1[t] = \begin{bmatrix} 1 & 0 \end{bmatrix} \vec{x}[t]$$

- Observability matrix: $O \triangleq \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \cos(\theta) & -\sin(\theta) \end{bmatrix}$
- Determinant of O: $det(O) = -\sin(\theta)$
 - non-zero if $\theta \neq 0, \pi, 2\pi, \cdots, i\pi \rightarrow$ observable
 - 0 if $\theta = i\pi \rightarrow$ not observable

$$\bullet \begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}, \quad y[t] = x_1[t] = \begin{bmatrix} 1 & 0 \end{bmatrix} \vec{x}[t]$$

- Observability matrix: $O \triangleq \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \cos(\theta) & -\sin(\theta) \end{bmatrix}$
- Determinant of O: $det(O) = -\sin(\theta)$
 - non-zero if $\theta \neq 0, \pi, 2\pi, \cdots, i\pi \rightarrow$ observable
 - 0 if $\theta = i\pi \rightarrow$ not observable

$$\bullet \begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}, \quad y[t] = x_1[t] = \begin{bmatrix} 1 & 0 \end{bmatrix} \vec{x}[t]$$

- Observability matrix: $O \triangleq \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \cos(\theta) & -\sin(\theta) \end{bmatrix}$
- Determinant of O: $det(O) = -\sin(\theta)$
 - non-zero if $\theta \neq 0, \pi, 2\pi, \cdots, i\pi \rightarrow$ observable
 - 0 if $\theta = i\pi \rightarrow$ not observable

$$\bullet \begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}, \quad y[t] = x_1[t] = \begin{bmatrix} 1 & 0 \end{bmatrix} \vec{x}[t]$$

- Observability matrix: $O \triangleq \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \cos(\theta) & -\sin(\theta) \end{bmatrix}$
- Determinant of O: $det(O) = -\sin(\theta)$
 - non-zero if $\theta \neq 0, \pi, 2\pi, \cdots, i\pi \rightarrow$ observable
 - 0 if $\theta = i\pi \rightarrow$ not observable

$$\bullet \begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}, \quad y[t] = x_1[t] = \begin{bmatrix} 1 & 0 \end{bmatrix} \vec{x}[t]$$

- Observability matrix: $O \triangleq \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \cos(\theta) & -\sin(\theta) \end{bmatrix}$
- Determinant of O: $det(O) = -\sin(\theta)$
 - non-zero if $\theta \neq 0, \pi, 2\pi, \cdots, i\pi \rightarrow$ observable
 - 0 if $\theta = i\pi \rightarrow$ not observable
 - cannot recover x₂ uniquely

- Can we make a system that recovers $\vec{x}[t]$ from y[t] in real time?
 - (we can use our knowledge of A, \vec{b} , u[t] and y[t])

- Can we make a system that recovers $\vec{x}[t]$ from y[t] in real time?
 - (we can use our knowledge of A, \vec{b} , u[t] and y[t])
- YES! (if the system is observable as it will turn out)

- Can we make a system that recovers $\vec{x}[t]$ from y[t] in real time?
 - (we can use our knowledge of A, \vec{b} , u[t] and y[t])
- YES! (if the system is observable as it will turn out)
 - first: make a clone of the system

- Can we make a system that recovers $\vec{x}[t]$ from y[t] in real time?
 - (we can use our knowledge of A, \vec{b} , u[t] and y[t])
- YES! (if the system is observable as it will turn out)
 - first: make a clone of the system
 - next: incorporate the difference between the outputs of the actual system and the clone

- Can we make a system that recovers $\vec{x}[t]$ from y[t] in real time?
 - (we can use our knowledge of A, \vec{b} , u[t] and y[t])
- YES! (if the system is observable as it will turn out)
 - first: make a clone of the system
 - next: incorporate the difference between the outputs of the actual system and the clone

- Can we make a system that recovers $\vec{x}[t]$ from y[t] in real time?
 - (we can use our knowledge of A, \vec{b} , u[t] and y[t])
- YES! (if the system is observable as it will turn out)
 - first: make a clone of the system
 - next: incorporate the difference between the outputs of the actual system and the clone

- Can we make a system that recovers $\vec{x}[t]$ from y[t] in real time?
 - (we can use our knowledge of A, \vec{b} , u[t] and y[t])
- YES! (if the system is observable as it will turn out)
 - first: make a clone of the system
 - next: incorporate the difference between the outputs of the actual system and the clone

- Can we make a system that recovers $\vec{x}[t]$ from y[t] in real time?
 - (we can use our knowledge of A, \vec{b} , u[t] and y[t])
- YES! (if the system is observable as it will turn out)
 - first: make a clone of the system
 - next: incorporate the difference between the outputs of the actual system and the clone

• Observer: $\hat{\vec{x}}[t+1] = A\hat{\vec{x}}[t] + \vec{b}u[t] + \vec{l}(\vec{c}^T\hat{\vec{x}}[t] - y[t])$

• Observer: $\hat{\vec{x}}[t+1] = A\hat{\vec{x}}[t] + \vec{b}u[t] + \vec{l}(\vec{c}^T\hat{\vec{x}}[t] - y[t])$

• Observer: $\hat{\vec{x}}[t+1] = A\hat{\vec{x}}[t] + \vec{b}u[t] + \vec{l}(\vec{c}^T\hat{\vec{x}}[t] - y[t])$ error feedback vector - TBD error in predicted output (scalar)

- Observer: $\hat{\vec{x}}[t+1] = A\hat{\vec{x}}[t] + \vec{b}u[t] + \vec{l}(\vec{c}^T\hat{\vec{x}}[t] y[t])$ error feedback vector TBD error in predicted output (scalar)
- Define a state prediction error: $\vec{\epsilon}[t] \triangleq \hat{\vec{x}}[t] \vec{x}[t]$

• Observer:
$$\hat{\vec{x}}[t+1] = A\hat{\vec{x}}[t] + \vec{b}u[t] + \vec{l}(\vec{c}^T\hat{\vec{x}}[t] - y[t])$$
error feedback vector - TBD error in predicted output (scalar)

- Define a state prediction error: $\vec{\epsilon}[t] \triangleq \hat{\vec{x}}[t] \vec{x}[t]$
 - then we can derive (move to xournal):
 - $\vec{\epsilon}[t+1] = (A + \vec{l}\vec{c}^T)\vec{\epsilon}[t]$

• Observer:
$$\hat{\vec{x}}[t+1] = A\hat{\vec{x}}[t] + \vec{b}u[t] + \vec{l}(\vec{c}^T\hat{\vec{x}}[t] - y[t])$$
error feedback vector - TBD error in predicted output (scalar)

- Define a state prediction error: $\vec{\epsilon}[t] \triangleq \hat{\vec{x}}[t] \vec{x}[t]$
 - then we can derive (move to xournal):
 - $\vec{\epsilon}[t+1] = (A + \vec{l}\vec{c}^T)\vec{\epsilon}[t]$
 - would like $\vec{\epsilon}[t] o 0$ as t increases (i.e., $\hat{\vec{x}}[t] o \vec{x}[t]$)

• Observer:
$$\hat{\vec{x}}[t+1] = A\hat{\vec{x}}[t] + \vec{b}u[t] + \vec{l}(\vec{c}^T\hat{\vec{x}}[t] - y[t])$$
error feedback vector - TBD error in predicted output (scalar)

- Define a state prediction error: $\vec{\epsilon}[t] \triangleq \hat{\vec{x}}[t] \vec{x}[t]$
 - then we can derive (move to xournal):
 - $\vec{\epsilon}[t+1] = (A + \vec{l}\vec{c}^T)\vec{\epsilon}[t]$
 - would like $ec{\epsilon}[t] o 0$ as t increases (i.e., $\hat{ec{x}}[t] o ec{x}[t]$)
 - ightharpoonup choose $ec{l}$ to make the eigenvalues of $A + ec{l} \, ec{c}^T$ stable!

• Observer:
$$\hat{\vec{x}}[t+1] = A\hat{\vec{x}}[t] + \vec{b}u[t] + \vec{l}(\vec{c}^T\hat{\vec{x}}[t] - y[t])$$
error feedback vector - TBD error in predicted output (scalar)

- Define a state prediction error: $\vec{\epsilon}[t] \triangleq \hat{\vec{x}}[t] \vec{x}[t]$
 - then we can derive (move to xournal):
 - $\vec{\epsilon}[t+1] = (A + \vec{l}\vec{c}^T)\vec{\epsilon}[t]$
 - would like $ec{\epsilon}[t] o 0$ as t increases (i.e., $\hat{ec{x}}[t] o ec{x}[t]$)
 - $ilde{f r}$ choose $ec{l}$ to make the eigenvalues of $A + ec{l} \, ec{c}^T$ stable!
 - ullet strong analogy w controllability (recall $A-ec{b}\,ec{k}^T$)

• Observer:
$$\hat{\vec{x}}[t+1] = A\hat{\vec{x}}[t] + \vec{b}u[t] + \vec{l}(\vec{c}^T\hat{\vec{x}}[t] - y[t])$$
error feedback vector - TBD error in predicted output (scalar)

- Define a state prediction error: $\vec{\epsilon}[t] \triangleq \hat{\vec{x}}[t] \vec{x}[t]$
 - then we can derive (move to xournal):
 - $\vec{\epsilon}[t+1] = (A + \vec{l}\vec{c}^T)\vec{\epsilon}[t]$
 - would like $ec{\epsilon}[t] o 0$ as t increases (i.e., $\hat{ec{x}}[t] o ec{x}[t]$)
 - \Rightarrow choose \vec{l} to make the eigenvalues of $A + \vec{l} \, \vec{c}^T$ stable!
 - ullet strong analogy w controllability (recall $A-ec{b}\,ec{k}^T$)
 - \rightarrow evs of $A + \vec{l} \vec{c}^T = \text{evs of } A^T + \vec{c} \vec{l}^T \rightarrow -\vec{c} \mapsto \vec{b}, \quad \vec{l}^T \mapsto \vec{k}^T$

• Observer:
$$\hat{\vec{x}}[t+1] = A\hat{\vec{x}}[t] + \vec{b}u[t] + \vec{l}(\vec{c}^T\hat{\vec{x}}[t] - y[t])$$
error feedback vector - TBD error in predicted output (scalar)

- Define a state prediction error: $\vec{\epsilon}[t] \triangleq \hat{\vec{x}}[t] \vec{x}[t]$
 - then we can derive (move to xournal):

$$\vec{\epsilon}[t+1] = (A + \vec{l}\vec{c}^T)\vec{\epsilon}[t]$$

- would like $ec{\epsilon}[t] o 0$ as t increases (i.e., $\hat{ec{x}}[t] o ec{x}[t]$)
 - \Rightarrow choose \vec{l} to make the eigenvalues of $A + \vec{l} \, \vec{c}^T$ stable!
- ullet strong analogy w controllability (recall $A-ec{b}\,ec{k}^T$)
 - \rightarrow evs of $A + \vec{l} \vec{c}^T = \text{evs of } A^T + \vec{c} \vec{l}^T \rightarrow -\vec{c} \mapsto \vec{b}, \quad \vec{l}^T \mapsto \vec{k}^T$
- i.e., can always make $A + \vec{l} \vec{c}^T$ stable if $(A^T, -\vec{c})$ is controllable (using previous controllability + feedback result)

• $(A^T, -\vec{c})$ controllable $\rightarrow -\left[\vec{c} | A^T\vec{c} | \cdots | (A^T)^{n-2}\vec{c} | (A^T)^{n-1}\vec{c}\right]$ must be full rank

- $(A^T, -\vec{c})$ controllable $\rightarrow -\left[\vec{c} | A^T\vec{c} | \cdots | (A^T)^{n-2}\vec{c} | (A^T)^{n-1}\vec{c}\right]$ must be full rank
 - $\rightarrow \left[\vec{c} | A^T \vec{c} | \cdots | (A^T)^{n-2} \vec{c} | (A^T)^{n-1} \vec{c}\right]^T$ must be full rank

- $(A^T, -\vec{c})$ controllable $\rightarrow -\left[\vec{c} | A^T \vec{c} | \cdots | (A^T)^{n-2} \vec{c} | (A^T)^{n-1} \vec{c}\right]$ must be full rank
 - $\rightarrow \left[\vec{c} | A^T \vec{c} | \cdots | (A^T)^{n-2} \vec{c} | (A^T)^{n-1} \vec{c}\right]^T$ must be full rank

$$\bullet \to \begin{bmatrix} \longleftarrow \vec{c}^T - \longrightarrow \\ \longleftarrow \vec{c}^T A - \longrightarrow \\ \longleftarrow \vec{c}^T A^2 - \longrightarrow \\ \vdots \\ \longleftarrow \vec{c}^T A^{n-1} - \longrightarrow \end{bmatrix} \text{ must be full rank }$$

- $(A^T, -\vec{c})$ controllable $\rightarrow -\left[\vec{c} | A^T\vec{c} | \cdots | (A^T)^{n-2}\vec{c} | (A^T)^{n-1}\vec{c}\right]$ must be full rank
 - $\rightarrow \left[\vec{c} | A^T \vec{c} | \cdots | (A^T)^{n-2} \vec{c} | (A^T)^{n-1} \vec{c}\right]^T$ must be full rank

$$\bullet \rightarrow \begin{bmatrix} \longleftarrow \bar{c}^T - \longrightarrow \\ \longleftarrow \bar{c}^T A - \longrightarrow \\ \longleftarrow \bar{c}^T A^2 - \longrightarrow \\ \vdots \\ \longleftarrow \bar{c}^T A^{n-1} - \longrightarrow \end{bmatrix} \text{must be full rank}$$

- $(A^T, -\vec{c})$ controllable $\rightarrow -\left[\vec{c} | A^T \vec{c} | \cdots | (A^T)^{n-2} \vec{c} | (A^T)^{n-1} \vec{c}\right]$ must be full rank
 - $\rightarrow \left[\vec{c} | A^T \vec{c} | \cdots | (A^T)^{n-2} \vec{c} | (A^T)^{n-1} \vec{c}\right]^T$ must be full rank

• Conclusion: if a system is observable, we can build an observer for it whose estimate $\hat{\vec{x}}[t]$ will approximate $\hat{\vec{x}}[t]$ more and more closely with t

• example:
$$\frac{\theta}{2} = \frac{\pi}{2} \rightarrow A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \rightarrow O = \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

• example:
$$\frac{\theta}{2} = \frac{\pi}{2} \rightarrow A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \rightarrow O = \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 full rank

- example: $\frac{\theta}{2} = \frac{\pi}{2} \rightarrow A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \rightarrow O = \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
 - side note: eigenvalues of A: $\pm \jmath \to BIBO$ unstable full rank

- example: $\frac{\theta}{2} = \frac{\pi}{2} \rightarrow A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \rightarrow O = \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
 - side note: eigenvalues of A: $\pm \jmath \to BIBO$ unstable full rank

• let
$$ec{l}=egin{bmatrix} l_1 \ l_2 \end{bmatrix}$$
 , then $A+ec{l}ec{c}^T=egin{bmatrix} l_1 & -1 \ 1+l_2 & 0 \end{bmatrix}$

- example: $\frac{\theta}{2} = \frac{\pi}{2} \rightarrow A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \rightarrow O = \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
 - side note: eigenvalues of A: $\pm \jmath \to BIBO$ unstable

• let
$$ec{l}=egin{bmatrix} l_1 \ l_2 \end{bmatrix}$$
, then $A+ec{l}ec{c}^T=egin{bmatrix} l_1 & -1 \ 1+l_2 & 0 \end{bmatrix}$

ullet eigenvalues (see the notes): $\lambda_{1,2}=rac{l_1}{2}\pmrac{l_1^2-4(1+l_2)}{2}$

full rank

- example: $\frac{\theta}{2} = \frac{\pi}{2} \rightarrow A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \rightarrow O = \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
 - side note: eigenvalues of A: $\pm \jmath \to BIBO$ unstable

• let
$$ec{l}=egin{bmatrix} l_1 \ l_2 \end{bmatrix}$$
, then $A+ec{l}ec{c}^T=egin{bmatrix} l_1 & -1 \ 1+l_2 & 0 \end{bmatrix}$

- ullet eigenvalues (see the notes): $\lambda_{1,2}=rac{l_1}{2}\pmrac{l_1^2-4(1+l_2)}{2}$
 - and can easily show: $l_1 = \lambda_1 + \lambda_2, \quad l_2 = \lambda_1 \lambda_2 1$

full rank

- example: $\frac{\theta}{2} = \frac{\pi}{2} \rightarrow A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \rightarrow O = \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
 - side note: eigenvalues of A: $\pm \jmath \to BIBO$ unstable full rank

• let
$$ec{l}=egin{bmatrix} l_1 \ l_2 \end{bmatrix}$$
, then $A+ec{l}ec{c}^T=egin{bmatrix} l_1 & -1 \ 1+l_2 & 0 \end{bmatrix}$

- ullet eigenvalues (see the notes): $\lambda_{1,2}=rac{l_1}{2}\pmrac{l_1^2-4(1+l_2)}{2}$
 - and can easily show: $l_1 = \lambda_1 + \lambda_2, \quad l_2 = \lambda_1 \lambda_2 1$
- ullet i.e., can set $ec{l}$ to obtain any desired eigenvalues

Observer: Rotation Matrix Example

- example: $\frac{\theta}{2} = \frac{\pi}{2} \rightarrow A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \rightarrow O = \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
 - side note: eigenvalues of A: $\pm \jmath \to BIBO$ unstable full rank

• let
$$ec{l}=egin{bmatrix} l_1 \ l_2 \end{bmatrix}$$
, then $A+ec{l}ec{c}^T=egin{bmatrix} l_1 & -1 \ 1+l_2 & 0 \end{bmatrix}$

- ullet eigenvalues (see the notes): $\lambda_{1,2}=rac{l_1}{2}\pmrac{l_1^2-4(1+l_2)}{2}$
 - and can easily show: $l_1 = \lambda_1 + \lambda_2, \quad l_2 = \lambda_1 \lambda_2 1$
- ullet i.e., can set $ec{l}$ to obtain any desired eigenvalues
 - warning: if complex, ensure evs are complex conjugates
 - > what will happen if you don't?

• now try:
$$\theta = \pi \rightarrow A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \rightarrow \text{not observable (recall)}$$

- now try: $\theta = \pi \rightarrow A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \rightarrow \text{not observable (recall)}$
 - - eigenvalues (see the notes): $\lambda_1 = -1$, $\lambda_2 = l_1 1$

- now try: $\theta = \pi \rightarrow A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \rightarrow \text{not observable (recall)}$
 - - ightharpoonup eigenvalues (see the notes): $\lambda_1 = -1$, $\lambda_2 = l_1 1$ cannot be changed/stabilized using \vec{l}

Observability: The Continuous Case

- Observability for C.T. state-space systems
 - and implications for placing observer eigenvalues
- EXACTLY THE SAME CRITERIA

Stability for C.T. means Re(eigenvalues) < 0

- Physical motion is inherently marginally stable
 - due to the relationship between position, velocity and acceleration
 - $\dot{x} = v, \quad \dot{v} = a$

- Physical motion is inherently marginally stable
 - due to the relationship between position, velocity and acceleration
 - $\dot{x} = v, \quad \dot{v} = a$
 - small error in a → growing error in v
 - small error in v → growing error in x

- Physical motion is inherently marginally stable
 - due to the relationship between position, velocity and acceleration
 - $\dot{x} = v, \quad \dot{v} = a$
 - small error in a → growing error in v
 - small error in v → growing error in x
- You are in a car in a featureless desert

- Physical motion is inherently marginally stable
 - due to the relationship between position, velocity and acceleration
 - $\dot{x} = v, \quad \dot{v} = a$
 - small error in a → growing error in v
 - small error in v → growing error in x
- You are in a car in a featureless desert
 - you know the position where you started

- Physical motion is inherently marginally stable
 - due to the relationship between position, velocity and acceleration
 - $\dot{x} = v, \quad \dot{v} = a$
 - small error in a → growing error in v
 - small error in v → growing error in x
- You are in a car in a featureless desert
 - you know the position where you started
 - you record your acceleration (along x and y directions)

- Physical motion is inherently marginally stable
 - due to the relationship between position, velocity and acceleration
 - $\dot{x} = v, \quad \dot{v} = a$
 - small error in a → growing error in v
 - small error in v → growing error in x
- You are in a car in a featureless desert
 - you know the position where you started
 - you record your acceleration (along x and y directions)
 - to estimate your current position
 - you integrate accel./velocity to predict your current position

- Physical motion is inherently marginally stable
 - due to the relationship between position, velocity and acceleration
 - $\dot{x} = v, \quad \dot{v} = a$
 - small error in a → growing error in v
 - small error in v → growing error in x
- You are in a car in a featureless desert
 - you know the position where you started
 - you record your acceleration (along x and y directions)
 - to estimate your current position
 - you integrate accel./velocity to predict your current position
 - but inevitable small errors (eg, play in accelerator) make your predicted position more and more inaccurate (m. stability)
 - soon, your prediction becomes completely useless miles from where you really are

- Physical motion is inherently marginally stable
 - due to the relationship between position, velocity and acceleration
 - $\dot{x} = v, \quad \dot{v} = a$
 - small error in a → growing error in v
 - small error in v → growing error in x
- You are in a car in a featureless desert
 - you know the position where you started
 - you record your acceleration (along x and y directions)
 - to estimate your current position
 - you integrate accel./velocity to predict your current position
 - but inevitable small errors (eg, play in accelerator) make your predicted position more and more inaccurate (m. stability)
 - soon, your prediction becomes completely useless miles from where you really are
 - NOT A VERY PRACTICALLY USEFUL WAY TO LOCATE YOURSELF

- Enter GPS
 - you have a GPS receiver and position calculator

- Enter GPS
 - you have a GPS receiver and position calculator
 - but GPS isn't perfectly accurate either (though much better than our integration technique, aka "dead reckoning")
 - can easily be a few 10s of feet off

- Enter GPS
 - you have a GPS receiver and position calculator
 - but GPS isn't perfectly accurate either (though much better than our integration technique, aka "dead reckoning")
 - can easily be a few 10s of feet off
- Can we combine dead reckoning and GPS
 - for better accuracy than GPS alone?

- Enter GPS
 - you have a GPS receiver and position calculator
 - but GPS isn't perfectly accurate either (though much better than our integration technique, aka "dead reckoning")
 - can easily be a few 10s of feet off
- Can we combine dead reckoning and GPS
 - for better accuracy than GPS alone?
- YES: feed GPS position data into an observer!

- Enter GPS
 - you have a GPS receiver and position calculator
 - but GPS isn't perfectly accurate either (though much better than our integration technique, aka "dead reckoning")
 - can easily be a few 10s of feet off
- Can we combine dead reckoning and GPS
 - for better accuracy than GPS alone?
- YES: feed GPS position data into an observer!
 - ullet stabilize the observer by choosing $ec{l}$ wisely

- Enter GPS
 - you have a GPS receiver and position calculator
 - but GPS isn't perfectly accurate either (though much better than our integration technique, aka "dead reckoning")
 - can easily be a few 10s of feet off
- Can we combine dead reckoning and GPS
 - for better accuracy than GPS alone?
- YES: feed GPS position data into an observer!
 - stabilize the observer by choosing \vec{l} wisely
 - even with perpetual small GPS and acceleration errors
 - → the observer's estimate is far better than just the GPS alone!*

- Enter GPS
 - you have a GPS receiver and position calculator
 - but GPS isn't perfectly accurate either (though much better than our integration technique, aka "dead reckoning")
 - can easily be a few 10s of feet off
- Can we combine dead reckoning and GPS
 - for better accuracy than GPS alone?
- YES: feed GPS position data into an observer!
 - ullet stabilize the observer by choosing $ec{l}$ wisely
 - even with perpetual small GPS and acceleration errors
 - → the observer's estimate is far better than just the GPS alone!*

- Enter GPS
 - you have a GPS receiver and position calculator
 - but GPS isn't perfectly accurate either (though much better than our integration technique, aka "dead reckoning")
 - can easily be a few 10s of feet off
- Can we combine dead reckoning and GPS
 - for better accuracy than GPS alone?
- YES: feed GPS position data into an observer!
 - ullet stabilize the observer by choosing $ec{l}$ wisely
 - even with perpetual small GPS and acceleration errors
 - → the observer's estimate is far better than just the GPS alone!*
- This is what all serious navigational systems use

- Enter GPS
 - you have a GPS receiver and position calculator
 - but GPS isn't perfectly accurate either (though much better than our integration technique, aka "dead reckoning")
 - can easily be a few 10s of feet off
- Can we combine dead reckoning and GPS
 - for better accuracy than GPS alone?
- YES: feed GPS position data into an observer!
 - ullet stabilize the observer by choosing $ec{l}$ wisely
 - even with perpetual small GPS and acceleration errors
 - → the observer's estimate is far better than just the GPS alone!*
- This is what all serious navigational systems use
 - ullet with an additional twist: $ec{l}$ keeps updating, becomes $ec{l}[t]$

- Enter GPS
 - you have a GPS receiver and position calculator
 - but GPS isn't perfectly accurate either (though much better than our integration technique, aka "dead reckoning")
 - can easily be a few 10s of feet off
- Can we combine dead reckoning and GPS
 - for better accuracy than GPS alone?
- YES: feed GPS position data into an observer!
 - ullet stabilize the observer by choosing $ec{l}$ wisely
 - even with perpetual small GPS and acceleration errors
 - → the observer's estimate is far better than just the GPS alone!*
- This is what all serious navigational systems use
 - ullet with an additional twist: $ec{l}$ keeps updating, becomes $ec{l}[t]$
 - this is the famous KALMAN FILTER
 - used in all rockets, drones, autonomous cars, ships, ...

Rudolf Kálmán "inventor" of control theory: 1950s/60s

- state-space representations
- stability, controllability, observability and implications
- Kalman filter

Rudolf Kálmán "inventor" of control theory: 1950s/60s

- state-space representations
- stability, controllability, observability and implications
- Kalman filter
 - initially received with "vast skepticism" not accepted for publication!

Rudolf Kálmán "inventor" of control theory: 1950s/60s

- state-space representations
- stability, controllability, observability and implications
- Kalman filter
 - initially received with "vast skepticism" not accepted for publication!
 - later adopted by the Apollo rocket program, the Space Shuttle, submarines, cruise missiles, UAVs/drones, autonomous vehicles, ...

Who Invented Eigendecomposition?

1852 - 1858

James Joseph Sylvester (1814-97)

Arthur Cayley (1821-95)

Who Invented Eigendecomposition?

1852 - 1858

James Joseph Sylvester (1814-97)

Arthur Cayley (1821-95)

Who Invented Eigendecomposition?

1852 - 1858

James Joseph Sylvester (1814-97)

Arthur Cayley (1821-95)

Who Invented Matrices?

- known and used in <u>China</u> before 100BC (!)
 - explained in Nine Chapters of the Mathematical Art (1000-100 BC)
 - used to solve simultaneous eqns; they knew about determinants
 - 1545: brought from China to Italy (by Cardano)

Who Invented Matrices?

- known and used in <u>China</u> before 100BC (!)
 - explained in Nine Chapters of the Mathematical Art (1000-100 BC)
 - used to solve simultaneous eqns; they knew about determinants
 - 1545: brought from China to Italy (by Cardano)
- 1683: Seki ("Japan's Newton") used matrices
- developed in Europe by Gauss and many others
 - finally, into its modern form by Cayley (mid 1800s)

Charles Proteus Steinmetz inventor of the phasor

- "Complex Quantities and their Use in Electrical Engineering", July 1893
 - revolutionized AC circuit/transmission calculations

Charles Proteus Steinmetz inventor of the phasor

- "Complex Quantities and their Use in Electrical Engineering", July 1893
 - revolutionized AC circuit/transmission calculations

suffered from hereditary dwarfism, hunchback, and hip dysplasia

Charles Proteus Steinmetz inventor of the phasor

- "Complex Quantities and their Use in Electrical Engineering", July 1893
 - revolutionized AC circuit/transmission calculations

suffered from hereditary dwarfism, hunchback, and hip dysplasia