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Maharbiz and Roychowdhury

Lectures 8A, 8B & 9A: Overview Slides

Data Analysis

Singular Value Decomposition
and

Principal Component Analysis
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The SVD
(Singular Value Decomposition)
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Singular Value Decomposition

● Looks like eigendecomposition, but is different
● Any matrix A (no exceptions) can be decomposed as
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Unitary Matrices: Orthonormality

=

UUT I

called ORTHONORMAL

Similarly,

are ORTHONORMAL
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Rank 1 Matrices and Outer Products

● Consider 

● rank-1 matrix can be written as      : an outer product

● outer product: product of col and row vectors

●    

● rank-1: a very “simple” type of matrix
● its “data” can be “compressed” very easily

➔ can be written as outer product: 

rank=1 col

row

rank=1

nxm nx1 1xm
nm numbers

n+m numbers
n+m << nm: data compression
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Matrix Multiplication using Outer Products

● Example:

YTX each of these is a
rank-1 OUTER PRODUCT
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         outer product
         nxm rank-1

        matrix

         outer product
         nxm rank-1

        matrix

         outer product
         nxm rank-1

        matrix

SVD: Sum of Outer Products Form

=

U VT
S

+ +…+=

Frobenius norm (sqrt(sum of squares) = 1)

A =

biggest weight next biggest weight smallest weight

SVD splits a matrix into a weighted sum of rank-1 matrices of norm 1



EE16B, Spring 2018, Lectures on SVD and PCA (Roychowdhury) Slide 8

Using the SVD for Image
Analysis and Compression
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Example: B&W Polish Flag as a Matrix

● size: 281x450

A =

6.75x104

This is a
RANK-1 FLAG

original: 3.2MB rank=1: 58kB

(actual values are normalized)

(actual values are normalized)
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Example: Polish Flag as a Matrix

● size: 281x450 (x 3 colours: R, G, B)

original: 10MB rank 1: 17.5kB

A =

RGB components
(actual ones are normalized)

(8.5,6.4,6.6)x104

RGB components
(actual ones are normalized)This is a

RANK-1 FLAG
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Example: SVD of the Austrian Flag

● size: 281x450 (x 3 colours: R, G, B)

A =

RGB components
(actual ones are normalized)

2.3x105

RGB components
(actual ones are normalized)This is ALSO a

RANK-1 FLAG

original: 73MB rank 1: 48.5kB
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Example: SVD of the Greek Flag

● size: 295x450 (x 3 colours: R, G, B)

This is a
RANK-3 FLAG

original: 10.1MB
rank 1: 18kb

rank 2: 36kB

rank 3: 54kb

strongest
“feature”

2nd strongest
“feature”

3rd strongest
“feature”
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Example: SVD of the US Flag
● size: 450x237 (x 3 colours: R, G, B)

strongest
“feature”

original: 8.8MB rank 5: 83kB rank 10: 167kB

rank 15: 253kB

         16.5kb           16.5kB             16.5kB
   

            16.5kb             16.5kb
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Example: SVD of Michel Maharbiz
● size: 1100x757 (grayscale)

strongest “feature”
?!

             15kB

or
ig

in
a

l

Features not always intuitive
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Michel’s Singular Values
● How Michel’s singular values drop off

typical resolution of eye (rule of thumb):
2 orders of magnitude below max SV

Singular Values drop off rapidly
in typical real-life applications

Keeping only the top few singular values
(and associated cols of U, rows of VT)

is usually a good approximation
(and requires much less data to store)
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Geometric View of Orthogonality

Projection onto Orthonormal Bases

Geometric View of Unitary Operations



EE16B, Spring 2018, Lectures on SVD and PCA (Roychowdhury) Slide 17

Geometric View of Orthogonality

● recall:

●  In 2D: 

called ORTHONORMAL

if not necessarily = 1 (but ≠ 0): then called ORTHOGONAL

ORTHOGONAL
TO EACH OTHER

NOT ORTHOGONAL
TO EACH OTHER

ORTHOGONAL
TO EACH OTHER

NOT ORTHOGONAL
TO EACH OTHER

NOT ORTHOGONAL
TO EACH OTHER 3D: orthogonality also

means at right angles

4D and higher: “right angles”
means orthogonality!

NOT ORTHOGONAL
TO EACH OTHER
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SAMPLES
 x               y 

Projection onto Orthonormal Bases

● How can we calculate the projections?
● data point:                        , or

● post-multiply by basis vectors:                    ,

➔ or:                            ; or, for all the data

another orthonormal basis

PROJECTION of 
onto B

2

 projecting the data D 
onto the basis B

2

orthonormal basis
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Using the SVD for Data
Analysis, Feature Extraction

and Clustering
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Matrices Representing Ratings
● Movies rated by Users (eg, Netflix, Amazon Video)

lighter colours
=

stronger ratings

Movie →

User Name
↓

Full 
Metal 
Jacket

Die 
Hard

Yojimbo 2001: A 
Space 

Odyssey

The 
Quiet 
Earth

On 
The 

Beach

Would I 
Lie to 
You

Dr. 
Strangelove

Hokkabaz

A 5 5 4 5 5 5 1 2 1

B 1 1 1 3 4 3 5 5 5

C 2 1 1 5 5 4 2 1 1

D 5 5 5 5 5 5 5 5 5

E 1 2 1 2 1 2 2 2 1
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Features of Rating Matrices

=

 “most typical” col (movie) feature:
65% like D’s choices, 50% like A’s,

40% like B’s, 35% like C’s
20% E’s

“most typical” row (user) feature:
likes SF more;

action somewhat less;
and comedy even less

Movie →

User Name
↓

Full 
Metal 
Jacket

Die 
Hard

Yojimbo 2001: A 
Space 

Odyssey

The 
Quiet 
Earth

On 
The 

Beach

Would I 
Lie to 
You

Dr. 
Strangelove

Hokkabaz

A 5 5 4 5 5 5 1 2 1

B 1 1 1 3 4 3 5 5 5

C 2 1 1 5 5 4 2 1 1

D 5 5 5 5 5 5 5 5 5

E 1 2 1 2 1 2 2 2 1
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Features of Rating Matrices (contd.)

=

 2nd most typical col (movie) feature:
55% like A’s choices, 70% unlike B’s,

35% like C’s, 15% unlike D’s,
negligibly like E’s

2nd most typical row (user) feature:
likes mostly action;

a bit less SF;
strongly anti-comedy

Movie →

User Name
↓

Full 
Metal 
Jacket

Die 
Hard

Yojimbo 2001: A 
Space 

Odyssey

The 
Quiet 
Earth

On 
The 

Beach

Would I 
Lie to 
You

Dr. 
Strangelove

Hokkabaz

A 5 5 4 5 5 5 1 2 1

B 1 1 1 3 4 3 5 5 5

C 2 1 1 5 5 4 2 1 1

D 5 5 5 5 5 5 5 5 5

E 1 2 1 2 1 2 2 2 1
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Projection in the Feature Basis

● Express each col of A (movie column) as a linear 
combination of col. features

● e.g., Full Metal Jacket column:

➔   

Movie →

User Name
↓

Full 
Metal 
Jacket

Die 
Hard

Yojimbo 2001: A 
Space 

Odyssey

The 
Quiet 
Earth

On 
The 

Beach

Would I 
Lie to 
You

Dr. 
Strangelove

Hokkabaz

A 5 5 4 5 5 5 1 2 1

B 1 1 1 3 4 3 5 5 5

C 2 1 1 5 5 4 2 1 1

D 5 5 5 5 5 5 5 5 5

E 1 2 1 2 1 2 2 2 1

col.(movie) features

“how much FMJ
is like the most
typical movie”

“how much FMJ
is like the 3rd most

typical movie”

Projections of 1st col (FMJ)
onto column feature basis 
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Clustering in Feature Bases

Movies classified by projections
on column (movie) features

Users classified by projection on
row (user) features

● Scatter plot of a
11

, a
21

, and a
31

 for all movies

these movies share similar 
“typical movie” coeffs these users share similar

“typical user” characteristics
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Principal Component Analysis
(PCA)
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Covariance Matrices

●   

●   

nxm
data matrix

A
(assumed real)

row of col means of A

m
e

a
n

 o
f

c
o

l 
1

m
e

a
n

 o
f

c
o

l 
m

-Ã

=S
(mxm matrix) Ã

Ã
T

=

covariance matrix
of A*

covariance matrix
of A

each col is a type of data
(eg: position, velocity)

e
a

ch
 ro

w
 is

 a m
e

a
s

u
re

m
e

n
t

(s
a

m
p

le
)

each col has average 0

subtract
row-of-means

from EACH
row of A
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Covariance Matrices: Properties

●   

● S is square and symmetric:            or 
● The diagonal entries of S are real and ≥ 0

●                                        : variance of ith row of A

●     

● can also show:
➔ using the Cauchy-Schwartz inequality

covariance
matrix
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The Correlation Matrix

●                ;                (symmetry);

●

why?

correlation

correlation
matrix
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Correlation: Geometric Intuition
r

12
 = 0 r

12
 = 0.29 r

12
 = 0.51 r

12
 = 0.71 

r
12

 = 0.87 r
12

 = 0.96 

r
12

 = 0 r
12

 = 0.17 

r12 = 0.56 r12 = 0.8 

correlation provides
some insight ...

… but it leaves a lot out

5000 x 2 matrices
(each point is a row)
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The Intuition behind PCA

● PCA: finds (orthogonal) “main axes along which 
the data lie”: the principal components

● provides weights indicating “strength” of each axis

● starting point for PCA: the covariance matrix S

principal
component 1

principal
component 2
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PCA: The Procedure

● Eigendecompose the covariance matrix

●   

●         = the weights
● (i.e., the variances)

● with 

● eigenvectors     = the principal components

cols will be orthonormal

will be real and ≥0
these are the PCs
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Principal Components of the Data
r

12
 = 0 r

12
 = 0.27 r

12
 = 0.49 r

12
 = 0.69 

First PC always captures
direction of

maximum data spread
(2nd PC: max spread in
orthogonal direction)

5000 x 2 matrices
(each point is a row)

r
12

 = 0 r
12

 = 0.11 

r12 = 0.57 r12 = 0.8 

r
12

 = 0.96 r
12

 = 0.86 
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PCA: Why it Works: The Flow
● First: establish some properties of P and L

● properties of real symmetric matrices
➔ real eigenvalues
➔ real set of orthonormal eigenvectors

● properties of real AT A
➔ eigenvalues ≥ 0

● Express data in eigenvector basis
● project each data point onto eigenvectors

● Show that the covariance matrix of the projected 
data is diagonal

● the variances of the projections along each axis/PC
● First PC maximizes variance along any 1D 

projection
● 2nd PC maximizes remaining variance; and so on
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Properties of Covariance Matrices
● If S is a real mxm symmetric matrix (s

ij
 = s

ji
)

● 1. its eigenvalues are all real
➔               . S symmetric →                   . → 
➔ S real →                . →                                      .
➔ hence                         →           → l is real.

● 2. A set of real eigenvectors can be found (see the notes)
● 3. The eigenvectors form an orthonormal set (basis).

● (see the notes)

● If S is in the form ATA (A real)
● 4. its eigenvalues are all ≥ 0.

➔                  →                         → 

➔ →                      →                       .                          
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PCA Basis Diagonalises the Data
● eigenvectors orthonormal →              →  
● eigendecomposition of S:

● project rows of (zero-mean) A in basis P:
● columns of F are the projections along

● Let G be the co-variance matrix of F:
●       

● the diagonal entries are the variances of the data 
projected along     (recall: from defn. of covariance matrix)

Data projected on PC basis
 becomes UNCORRELATED= L (diagonal)
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Why do PCs Align with Visual Axes?

● So far: have shown that PCs are orthonormal
● data projected onto them becomes uncorrelated

● but why is the first PC aligned with the 
direction of maximum spread?

● Key property of PCA
● consider any norm-1 vector (“direction”)
● project the data along it: 
● find the variance of the projected data:
● the first PC      maximizes this variance (the max is     )

➔ 2nd PC: maximizes variance along directions orthogonal to       
→ 3rd PC: maximizes var. along dirs. orthogonal to      and     ; and so on     

Why this? 
and not this?

proof → notes
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PCA: the Connection with the SVD

● Suppose you run an SVD on the data: 
● the covariance matrix is:

➔   

➔ recall PCA: 

● i.e., can use the SVD of Ã for PCA:

➔ just set               and             (no need to even form S)!

diagonal and ≥ 0

IDENTICAL FORM
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Computing SVDs via Eigendecomposition

● Prev. slide: SVD:                       ; PCA: 

● Q: how to calculate an SVD of a matrix A?
● using eigendecomposition

● A: just use the above insight (PCA/eigendecomposition)!
● form                 , eigendecompose  

● set              ,  

● what about U?
➔ just eigendecompose                                ; then 
➔ can also get V from the same eigendecomposition

●                   →                      →                       →     

● set

nxn

 more work, because (we had assumed) n ≥ m

if s
i
 = 0, choose v

i
 arbitrarily to

complete orthonormal basis for V

* why didn’t we subtract means from A and normalize by n?
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Who Invented the SVD?
● SVD: “Swiss Army Knife” of numerical analysis

Eugenio Beltrami
1835-1900

proposed the SVD
via eigendecomposition

of AT A or A AT

Camille Jordan
1838-1922

Erhardt Schmidt
1878-1959

James Joseph
 Sylvester 1814-97

Hermann Weyl
1885-1955

Gene Golub
1932-2007

Bill Kahan
UCB EECS

Jim Demmel
UCB EECS
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Summary: SVD and PCA

● Singular Value Decomposition (SVD)
● useful for “low-rank approximations” of matrices

➔ image analysis and compression
➔ general data analysis, finding important features, clustering

● Covariance, Correlation and PCA
● visualizing data as scatter plots
● covariance and correlation matrices of data
● Principal Component Analysis

➔ eigenvecs of covariance matrix: principal components
● directions along which data varies maximally

● dropping later PCs can, eg, clean out (small) noise
➔ eigenvalues correspond to variances along PCs
➔ SVD can be used instead of eigendecomposition

● eigendecomposition of covariance matrix: performs SVD


