EE16B, Spring 2018 UC Berkeley EECS

Maharbiz and Roychowdhury

Lectures 8A, 8B \& 9A: Overview Slides

Data Analysis

Singular Value Decomposition and
 Principal Component Analysis

The SVD (Singular Value Decomposition)

Singular Value Decomposition

- Looks like eigendecomposition, but is different
- Any matrix A (no exceptions) can be decomposed as

Unitary Matrices: Orthonormality

$$
\begin{array}{lllll}
\vec{u}_{1}^{T} \vec{u}_{1}=1 & \vec{u}_{1}^{T} \vec{u}_{2}=0 & \vec{u}_{1}^{T} \vec{u}_{3}=0 & \cdots & \vec{u}_{1}^{T} \vec{u}_{n}=0 \\
\vec{u}_{2}^{T} \vec{u}_{1}=0 & \vec{u}_{2}^{T} \vec{u}_{2}=1 & \vec{u}_{3}^{T} \vec{u}_{3}=0 & \cdots & \vec{u}_{2}^{T} \vec{u}_{n}=0
\end{array}
$$

$$
\vec{u}_{n}^{T} \vec{u}_{1}=0 \quad \vec{u}_{n}^{T} \vec{u}_{2}=0 \quad \vec{u}_{n}^{T} \vec{u}_{3}=0 \quad \cdots \quad \vec{u}_{n}^{T} \vec{u}_{n}=1 \quad \vec{u}_{i}^{T} \vec{u}_{j}=\left\{\begin{array}{cc}
1, & \text { if } i=j \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\begin{aligned}
& \quad \text { Similarly, } \\
& \vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{m}\left\|\vec{v}_{j}\right\|=1 \\
& \text { are ORTHONORMAL }
\end{aligned}
$$

Rank 1 Matrices and Outer Products

- Consider $A=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 3 & 3 & 3 & 3 & 3 \\ 2 & 2 & 2 & 2 & 2\end{array}\right]=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]$-row
- rank-1 matrix can be written as $\vec{x} \vec{y}^{T}$: an outer product
- outer product: product of col and row vectors
- $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\left[\begin{array}{lllll}a & b & c & d & e\end{array}\right]=\left[\begin{array}{lllll}x a & x b & x c & x d & x e \\ y a & y b & y c & y d & y e \\ z a & z b & z c & z d & z e\end{array}\right]^{\text {rank }=1}$
- rank-1: a very "simple" type of matrix
- its "data" can be "compressed" very easily
\rightarrow can be written as outer product: $A=\vec{x} \vec{y}^{T}$
$\mathrm{n}+\mathrm{m} \ll \mathrm{nm}$: data compression
nxm

Where We Were Before

Matrix Multiplication using Outer Products

- Example:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{lll}
x & y & z \\
p & q & r
\end{array}\right]=\left[\begin{array}{ll}
a x+b p & a y+b q \\
c x+d p & c y+d q+b r \\
c x+d r
\end{array}\right]} \\
& {\left[\begin{array}{l}
a \\
c
\end{array}\right]\left[\begin{array}{lll}
x & y & z
\end{array}\right]=\left[\begin{array}{lll}
a x & a y & a z \\
c x & c y & c z
\end{array}\right]} \\
& {\left[\begin{array}{l}
b \\
d
\end{array}\right]\left[\begin{array}{lll}
p & q & r
\end{array}\right]=\left[\begin{array}{lll}
a p & b q & b r \\
c & d
\end{array}\right]\left[\begin{array}{lll}
x & y & z \\
p & q & r
\end{array}\right]=} \\
& {\left[\begin{array}{ll}
a \\
c
\end{array}\right]\left[\begin{array}{lll}
x & y & z
\end{array}\right]+\left[\begin{array}{ll}
b \\
d
\end{array}\right]\left[\begin{array}{lll}
p & q & r
\end{array}\right]}
\end{aligned}
$$

SVD: Sum of Outer Products Form

SVD splits a matrix into a weighted sum of rank-1 matrices of norm 1

Using the SVD for Image Analysis and Compression

Example: B\&W Polish Flag as a Matrix

- size: 281x450

original: 3.2 MB

rank=1: 58 kB

Example: Polish Flag as a Matrix

- size: 281x450 (x 3 colours: R, G, B)

original: 10MB
 (actual ones are normalized)

$$
\sigma_{2} \simeq 10^{-10} \text { for } \mathrm{R}, \mathrm{G}, \mathrm{~B}
$$

rank 1: 17.5 kB

Example: SVD of the Austrian Flag

- size: 281x450 (x 3 colours: $\mathrm{R}, \mathrm{G}, \mathrm{B}$)

A =

original: 73MB

rank 1: 48.5kB

RGB components (actual ones are normalized)

Example: SVD of the Greek Flag

- size: 295x450 (x 3 colours: R, G, B)

original: 10.1 MB

rank 3: 54 kb $\sum_{i=1}^{3} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{T}$

rank 1: 18kb $\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{T}$

$$
\begin{array}{r}
\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{T}+ \\
\sigma_{2} \vec{u}_{2} \vec{v}_{2}^{T}
\end{array}
$$

$\sigma_{2} \vec{u}_{2} \vec{v}_{2}^{T}$

Example: SVD of the US Flag

- size: 450x237 (x 3 colours: R, G, B)

original: 8.8MB

rank 15: 253kB

$\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{T}$

$\sigma_{2} \vec{u}_{2} \vec{v}_{2}^{T} 16.5 \mathrm{~kb}$

$\sigma_{5} \vec{u}_{5} \vec{v}_{5}^{T} 16.5 \mathrm{~kb}$

rank 5: 83kB
rank 10: 167kB

$\sigma_{3} \vec{u}_{3} \vec{v}_{3}^{T} 16.5 \mathrm{kB} \quad \sigma_{4} \vec{u}_{4} \vec{v}_{4}^{T} 16.5 \mathrm{kB}$

Example: SVD of Michel Maharbiz

- size: 1100x757 (grayscale)

strongest "feature"

$\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{T} 15 \mathrm{kB}$
$\sum_{i=1}^{2} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{T}$
$\sum_{i=1}^{5} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{T}$
$\sum_{i=1}^{10} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{T}$

$\sum_{i=1}^{20} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{T} \quad \sum_{i=1}^{50} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{T} \quad \sum_{i=1}^{100} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{T} \quad \sum_{i=1}^{200} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{T}$
Features not always intuitive

Michel's Singular Values

- How Michel's singular values drop off

Michel's singular values

Geometric View of Orthogonality

Projection onto Orthonormal Bases

Geometric View of Unitary Operations

Geometric View of Orthogonality

- recall: $\vec{u}_{i}^{T} \vec{u}_{j}=\left\{\begin{array}{ll}11 & \text { if } i=j \\ 0 & \text { otherwise }\end{array} \vec{u}_{1}, \vec{u}_{2}, \cdots, \vec{u}_{n}\right.$
- In 2D:

3D: orthogonality also means at right angles
4D and higher: "right angles" means orthogonality!

Projection onto Orthonormal Bases

- How can we calculate the projections?
- data point: $\left[\begin{array}{l}x \\ y\end{array}\right]=\alpha \vec{p}_{1}+\beta \vec{p}_{2}$, or $\left[\begin{array}{ll}x & y\end{array}\right]=\alpha \vec{p}_{1}^{T}+\beta \vec{p}_{2}^{T}$
- post-multiply by basis vectors: $\left[\begin{array}{ll}x & y\end{array}\right] \vec{p}_{1}=\alpha,\left[\begin{array}{ll}x & y\end{array}\right] \vec{p}_{2}=\beta$
\rightarrow or: $\left[\begin{array}{ll}\alpha & \beta\end{array}\right]=\left[\begin{array}{ll}x & y\end{array}\right] B_{2}$; or, for all the data $D_{2}=\left[\begin{array}{ll}\alpha_{1} & \beta_{1} \\ \alpha_{2} & \beta_{2} \\ \alpha_{3} & \beta_{3}\end{array}\right]=D B_{2}$
projecting the data D

Using the SVD for Data Analysis, Feature Extraction and Clustering

Matrices Representing Ratings

- Movies rated by Users (eg, Netflix, Amazon Video)

Movie \rightarrow User Name \downarrow	Full Matal Jacket	Die Hard	Yojimbo				Would I Le to You	Dr. Strangelove	Hokkabaz
A	5	5	4	5	5	5	1	2	1
B	1	1	1	3	4	3	5	5	5
C	2	1	1	5	5	4	2	1	1
D	5	5	5	5	5	5	5	5	5
E	1	2	1	2	1	2	2	2	1

Features of Rating Matrices

Movie \rightarrow User Name \downarrow	Full Metal Jacket	Die Hard	Yojimbo				Would I Lie to You	Dr. Strangelove	Hokkabaz
A	5	5	4	5	5	5	1	2	1
B	1	1	1	3	4	3	5	5	5
C	2	1	1	5	5	4	2	1	1
D	5	5	5	5	5	5	5	5	5
E	1	2	1	2	1	2	2	2	1

"most typical" col (movie) feature: 65\% like D's choices, 50% like A's,
 40\% like B's, 35\% like C's 20\% E's

"most typical" row (user) feature:
likes SF more; action somewhat less; and comedy even less

Features of Rating Matrices (contd.)

Movie \rightarrow User Name \downarrow	Full Metal Jacket	Die Hard	Yojimbo				Would I Lie to You	Dr. Strangelove	Hokkabaz
A	5	5	4	5	5	5	1	2	1
B	1	1	1	3	4	3	5	5	5
C	2	1	1	5	5	4	2	1	1
D	5	5	5	5	5	5	5	5	5
E	1	2	1	2	1	2	2	2	1

$2^{\text {nd }}$ most typical col (movie) feature:
55% like A's choices, 70% unlike B's, $2^{\text {nd }}$ most typical row (user) feature:
35% like C's, 15% unlike D's, negligibly like E's

EE16B, Spring 2018, Lectures on SVD and PCA (Roychowd

likes mostly action; a bit less SF; strongly anti-comedy

Projection in the Feature Basis

Movie \rightarrow User Name \downarrow	Full Matalat Jacket	Die Hard	Yojimbo				Would I Lie to You	Dr. Strangelove	Hokkabaz
A	5	5	4	5	5	5	1	2	1
B	1	1	1	3	4	3	5	5	5
C	2	1	1	5	5	4	2	1	1
D	5	5	5	5	5	5	5	5	5
E	1	2	1	2	1	2	2	2	1

- Express each col of A (movie column) as a linear combination of col. features
- e.g., Full Metal Jacket column:

Clustering in Feature Bases

- Scatter plot of α_{11}, α_{21}, and α_{31} for all movies

$$
\begin{array}{r}
\text { user E row }=\left[\begin{array}{lllllllll}
1 & 2 & 1 & 2 & 1 & 2 & 2 & 2 & 1
\end{array}\right] \\
\quad=\beta_{51} \vec{v}_{1}^{T}+\beta_{52} \vec{v}_{2}^{T}+\beta_{53} \vec{v}_{3}^{T}+\cdots+\beta_{55} \vec{v}_{5}^{T}
\end{array}
$$

Movies classified by projections on column (movie) features

Users classified by projection on row (user) features
clustering users by movie similarity

Principal Component Analysis (PCA)

Covariance Matrices

Covariance Matrix - example

- 3×2 example

Covariance Matrices: Properties

- $S \triangleq \frac{1}{n} \tilde{A}^{T} \tilde{A}$
- S is square and symmetric: $S=S^{T}$ or $s_{i j}=s_{j i}$
- The diagonal entries of S are real and ≥ 0
- $s_{i}^{2} \triangleq s_{i i}=\frac{1}{n} \sum_{j=1}^{n} \tilde{a}_{j i}^{2} \geq 0$: variance of $\mathbf{i}^{\text {th }}$ col of \mathbf{A}
- $S=\left[\begin{array}{ccccc}s_{1}^{2} & s_{12} & s_{13} & \cdots & s_{1 m} \\ s_{21} & s_{2}^{2} & s_{23} & \cdots & s_{2 m} \\ s_{31} & s_{32} & s_{3}^{2} & \cdots & s_{3 m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ s_{m 1} & s_{m 2} & s_{m 3} & \cdots & s_{m}^{2}\end{array}\right] \xrightarrow{\text { covariance }}$ matrix
- can also show: $\left|s_{i j}\right| \leq s_{i} s_{j}$
\rightarrow using the Cauchy-Schwartz inequality

The Correlation Matrix

correlation

- $R=\left[\begin{array}{ccccc}1 & r_{12} & r_{13} & \cdots & r_{1 m} \\ r_{21} & 1 & r_{23} & \cdots & r_{2 m} \\ r_{31} & r_{32} & 1 & \cdots & r_{3 m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ r_{m 1} & r_{m 2} & r_{m 3} & \cdots & 1\end{array}\right]$

Correlation: Geometric Intuition

$\mathrm{r}_{12}=0.29$

correlation provides some insight ...
... but it leaves a lot out

5000×2 matrices (each point is a row)

$r_{12}=0.71$

The Intuition behind PCA

- PCA: finds (orthogonal) "main axes along which the data lie": the principal components
- provides weights indicating "strength" of each axis

- starting point for PCA: the covariance matrix S

PCA: The Procedure

- Eigendecompose the covariance matrix

- with $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \cdots \geq \lambda_{m} \geq 0$
- eigenvectors $\vec{p}_{i}=$ the principal components

Principal Components of the Data

PCA: Why it Works: The Flow

- First: establish some properties of P and Λ
- properties of real symmetric matrices \rightarrow real eigenvalues
\rightarrow real set of orthonormal eigenvectors
- properties of real $\mathrm{A}^{\top} \mathrm{A}$
\rightarrow eigenvalues ≥ 0
- Express data in eigenvector basis

- project each data point onto eigenvectors
- Show that the covariance matrix of the projected data is diagonal
- the variances of the projections along each axis/PC
- First PC maximizes variance along any 1D projection
- $2^{\text {nd }}$ PC maximizes remaining variance; and so on

Properties of Covariance Matrices

- If S is a real $m \times m$ symmetric matrix $\left(\mathrm{s}_{\mathrm{ij}}=\mathrm{s}_{\mathrm{j} i}\right)$
- 1. its eigenvalues are all real
$\rightarrow S \vec{p}=\lambda \vec{p}$. S symmetric $\rightarrow \vec{p}^{T} S=\lambda \vec{p}^{T} . \rightarrow \vec{p}^{T} S \overline{\vec{p}}=\lambda \vec{p}^{T} \overline{\vec{p}}=\lambda\|\vec{p}\|^{2}$
\rightarrow S real $\rightarrow S \overline{\vec{p}}=\bar{\lambda} \overline{\vec{p}} \cdot \rightarrow \vec{p}^{T} S \overline{\vec{p}}=\bar{\lambda} \vec{p}^{T} \overline{\vec{p}}=\bar{\lambda}\|\vec{p}\|^{2}$.
\rightarrow hence $\lambda\|\vec{p}\|^{2}=\bar{\lambda}\|\vec{p}\|^{2} \rightarrow \lambda=\bar{\lambda} \rightarrow \lambda$ is real.
- 2. A set of real eigenvectors can be found (see the notes)
- 3. The eigenvectors form an orthonormal set (basis).
- (see the notes)
- If S is in the form $A^{\top} A$ (A real)
- 4. its eigenvalues are all ≥ 0.
$\rightarrow A^{T} A \vec{p}=\lambda \vec{p} \rightarrow \vec{p}^{T} A^{T} A \vec{p}=\lambda \vec{p}^{T} \vec{p} \rightarrow(A \vec{p})^{T} A \vec{p}=\lambda \vec{p}^{T} \vec{p}$
$\rightarrow \rightarrow\|\vec{p}\|^{2}=\lambda\|\vec{p}\|^{2} \rightarrow \lambda=\frac{\|A \vec{p}\|^{2}}{\|\vec{p}\|^{2}} \geq 0$.

PCA Basis Diagonalises the Data

- eigenvectors orthonormal $\rightarrow P P^{T}=I \rightarrow P^{T}=P^{-1}$
- eigendecomposition of $\mathrm{S}: S=P \Lambda P^{T}$
- project rows of (zero-mean) A in basis $\mathrm{P}: F=\tilde{A} P$
- columns of F are the projections along \vec{p}_{i}
- Let G be the co-variance matrix of $\mathrm{F}: G \triangleq\left(F^{T} F\right) / n$

- the diagonal entries are the variances of the data projected along \vec{p}_{i} (recall: from defn. of covariance matrix)

Why do PCs Align with Visual Axes?

- So far: have shown that PCs are orthonormal
- data projected onto them becomes uncorrelated
- but why is the first PC aligned with the direction of maximum spread?
- Key property of PCA ——proof \rightarrow notes
- consider any norm-1 vector ("direction") \vec{p}
- project the data along it: $\tilde{A} \vec{p}$
- find the variance of the projected data: $\frac{1}{n}(\tilde{A} \vec{p})^{T}(\tilde{A} \vec{p})$
- the first PC \vec{p}_{1} maximizes this variance (the max is $\vec{\lambda}_{1}$)
$\rightarrow 2^{\text {nd }} \mathrm{PC}$: maximizes variance along directions orthogonal to \vec{p}_{1}
$\rightarrow 3^{\text {rd }}$ PC: maximizes var. along dirs. orthogonal to \vec{p}_{1} and \vec{p}_{2}; and so on

PCA: the Connection with the SVD

- Suppose you run an SVD on the data: $\tilde{A}=U \Sigma V^{T}$
- the covariance matrix is:
$\rightarrow S \triangleq \frac{1}{n} \tilde{A}^{T} \tilde{A}=\frac{1}{n} V \Sigma^{T} U^{T} U \Sigma V^{T}=V \frac{\sum^{T} \Sigma}{n} V^{T}$
\rightarrow recall PCA: $S=P Q^{\square} P^{T} \xrightarrow{\text { IDENTICAL FORM }}{ }^{\perp}$
- i.e., can use the SVD of Ã for PCA:
\rightarrow just set $\lambda_{i} \triangleq \frac{\sigma_{i}^{2}}{n}$ and $P \triangleq V($ no need to even form S$)!$

Computing SVDs via Eigendecomposition

- Prev. slide: SVD: $S=V \frac{\Sigma^{T} \Sigma}{n} V^{T} ; \mathrm{PCA}: S=P \Lambda P^{T}$
- Q: how to calculate an SVD of a matrix A?
- using eigendecomposition
- A: just use the above insight (PCA/eigendecomposition)!
- form $S \triangleq A^{T} A$, eigendecompose $S=P \Lambda P^{T}$
- set $\sigma_{i} \triangleq \sqrt{\lambda_{i}}, V \triangleq P \quad \square$ more work, because (we had assumed) $\mathrm{n} \geq \mathrm{m}$
- what about U?
\rightarrow just eigendecompose $\hat{S} \triangleq A A^{T}=Q \hat{\Lambda} Q^{T}$; then $U \triangleq Q$
\rightarrow can also get V from the same eigendecomposition
$\begin{gathered}\text { - } A=U \Sigma V^{T} \\ \text { set } \sigma_{i} \triangleq \sqrt{\lambda_{i}}\end{gathered} U^{T} A=\Sigma V^{T} \rightarrow A^{T} U=V \Sigma^{T} \rightarrow \vec{v}_{i}=\frac{A^{T} \vec{u}_{i}}{\substack{\text { if } \sigma_{i}=0, \text { choose } v, \text { arbitrarily to } \\ \text { complete orthonormal basis for } V}} \begin{gathered}i=1, \cdots, m\end{gathered}$
* why didn't we subtract means from A and normalize by n ?

Who Invented the SVD?

- SVD: "Swiss Army Knife" of numerical analysis

§ Eugenio Beltrami 1835-1900 proposed the SVD via eigendecomposition of $A^{\top} A$ or $A A^{\top}$

Camille Jordan 1838-1922

Gene Golub 1932-2007

Erhardt Schmidt 1878-1959

Bill Kahan
UCB EECS
Bill Kahan
UCB EECS

James Joseph Sylvester 1814-97

Hermann Weyl 1885-1955

Jim Demmel UCB EECS

Summary: SVD and PCA

- Singular Value Decomposition (SVD)
- useful for "low-rank approximations" of matrices
\rightarrow image analysis and compression
\rightarrow general data analysis, finding important features, clustering
- Covariance, Correlation and PCA
- visualizing data as scatter plots
- covariance and correlation matrices of data
- Principal Component Analysis
\rightarrow eigenvecs of covariance matrix: principal components
- directions along which data varies maximally
- dropping later PCs can, eg, clean out (small) noise
\rightarrow eigenvalues correspond to variances along PCs
\rightarrow SVD can be used instead of eigendecomposition
- eigendecomposition of covariance matrix: performs SVD

