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Lectures 8A, 8B & 9A: Overview Slides

Data Analysis

Singular Value Decomposition
and
Principal Component Analysis

EE16B, Spring 2018, Lectures on SVD and PCA (Roychowdhury) Slide 1



The SVD
(Singular Value Decomposition)
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| Singular Value Decomposition |

* | ooks like eigendecomposition, but is different
* Any matrix A (no exceptions) can be decomposed as

A=UXV?!

m N B N B ) m )
T
n A =N U n \Y "
unitary
SINGULAR VALUES unitary ‘
01> 09 >03> >0, >0 ‘ diagonal VTV:]

o. real and +ve
UlU =1

EE16B, Spring 2018, Lectures on SVD and PCA (Roychowdhury) Slide 3



| Unitary Matrices: Orthonormality |

1

v
]
|
Sl——
—
Ql—)
]
1

[E—
|

617627'” 7Un
called ORTHONORMAL

. J1, ifi=j

U,y =0 uj,us =0 u,uz =0 Uy U =1 77 0 otherwise
Similarly, ;|| =1

V1,02, " ,

are ORTHONORMAL
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Rank 1 Matrices and Outer Products
rank=1\ col\

_ 1 1 1 1 11 [1]
*Consider 4= 3 3 3 3 3|=(3[[1 1 1 1 1Je—row
2 2 2 2 2| |2

« rank-1 matrix can be written as fng_: an outer product
* outer product: product of col and row vectors

rank=1

T xa xb xc xd xel
® J [a b ¢ d e} = |lya yb yc yd ye
Z | za zb zc zd ze |

* rank-1: a very “simple” type of matrix

* its “data” can be “compressed” very easily
> can be written as outer product: A = 7y

nm numbers WG AN A

nxkm nx1 1xm

n+m << nm: data compression E E
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| Where We Were Before

SVDs for identifying features of images
SVDs for identifying features of general data
start Principal Component analysis
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‘ Matrix Multiplication using Outer Products ‘

X

1] ]

T1 Tog X3 -+ Tnp
a bl |z y =z
c d|l|p q 7

e Example:
i s -

o
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— i —

each of these is a
rank-1 OUTER PRODUCT

|

—»—»T
= T1Y; + T2Yy

]_ [aa?—l—bp ay +bq az+ br

cr + dp

cy + dqg

cz + dr]

axr  ay az]

cy cz

bg Obr
dq dr

a bl |z vy
c d]|p q

e o af]o -

PCA (Roychowdhury)
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| SVD: Sum of Outer Products Form |
U ) V'

o - ?7? _
72 — T —
03
A— Ui U2 3 Up .
J J J l Gm 1772
o[o 0 next biagest weiaht smallest weight
01-[_[H6§F4>] UQ—T_[%@T—Q Um_T_B—ﬁfl—ﬂ
outer product + outer product + F outer product
— (751 nxm rank-1 U9 nxm rank-1 . un Um | nxm rank-1
matrix matrix matrix
i o UL TN

~ / /

Frobenius norm (sqrt(sum of squares) = 1)
SVD splits a matrix into a weighted sum of rank-1 matrices of norm 1
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Using the SVD for Image
Analysis and Compression
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Example: B&W Polish Flag as a Matrix

e size: 281x450

original: 3.2MB rank=1: 58kB

I1[T][+— v —]

6.75x104 \
oo ~ 10710 \‘ :

|1, 1]
This is a (actual values are normalized)l :

gl
[

(actual values are normalized)

RANK-1 FLAG
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| Example: Polish Flag as a Matrix |

* size: 281x450 (x 3 colours: R, G, B)

original: 10MB rank 1: 17.5kB

O1 [T é Ul

e

(8.5,6.4,6.6)x10*

gl
[

7 7

oo ~ 1071 for R, G, B

RGB components
(actual ones are normalized)

This is a

RGB components

ARULSQUER®NE  (actual ones are normallzed)
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|Example: SVD of the Austrian Flag|

* size: 281x450 (x 3 colours: R, G, B)

A =

original: 73MB rank 1: 48.5kB
A
2.3X105/ U1
[ |

RGB components
(actual ones are normalized)

This is ALSO a RGB components
AEOWLSINEYNE]  (actual ones are normalized)
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S
D=1

| Example: SVD of the Greek Flag |

* size: 295x450 (x 3 colours: R, G, B)

—
. ]
. h
]

original: 10.1MB
. F
N

rank 3: 54kb

3 -
Zi:l ;U U;

strongest
“feature”

|A/

E EE—

rank 1: 18kb
0'1?7:1?7{

i

rank 2: 36kB

— —»T
01U1Vy +

Ugﬁgﬁg
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2" strongest 3™ strongest
“feature” “feature”

026217; 0'31_[3?7;

This is a
RANK-3 FLAG
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| Example: SVD of the US Flag |

* size: 450x237 (x 3 colours: R, G, B)

strongest
“feature”

rank 5: 83kB rank 10: 167kB

041i4T; 16.5kB

o5iisUs 16.5kb  o6ilste 16.5kb
rank 15: 253kB
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| Example: SVD of Michel Maharbiz |
* size: 1100x757 (grayscale)

strongest “feature”
?!

\

original

o1u1v7 15kB 27;21 O;UiV; Zz 10U ;U Zz 1 03UV,

. /4%
20 —~T 50 —’T 100 — ST 200 - —»T
Z'L 1 O-ILUIL/U i=1 O'ZU/Z'U i—=1 O-rLurLU,L i=1 O-’Lu’L,U

Features not always intuitive

<
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| Michel’s Singular Values
* How Michel’s singular values drop off

Michel's singular values

Singular Values often drop off

rapidly in real-life applications
10* §

typical resolution of eye (rule of thumb):
2 orders of magnitude below max SV

Keeping only the top few singular values

(and associated cols of U, rows of V')
is usually a good approximation
(and requires much less data to store)

1025‘

100 200 300 400 500 600 700
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Geometric View of Orthogonality
Projection onto Orthonormal Bases

Geometric View of Unitary Operations
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| Geometric View of Orthogonality |

if not necessarily = 1 (but # 0): then called ORTHOGONAL

if § =

U, U2y, Up

o recall: @i, = .
0 otherwise called ORTHONORMAL

In 2D:

. 1. TJo I ' S R g | ORTHOGONAL
= M U2 = [0.5] v = [0} 2= 5B { 1 } TO EACH OTHER
ORTHOGONAL NOT ORTHOGONAL
+~—T0O EACH OTHER // TO EACH OTHER 1} . 1 [—1}
1" 7901
>
it iy =0 il iy = —1/(2V/2) it iy = 0
o1, 1l NOT ORTHOGONAL NOT ORTHOGONAL ’ .
= M 1275 { 0 } TO EACH OTHER TO EACH OTHER 3D: orthogonality also
e \ means at right angles
TO EACH OTHER
2 / : :
e < 4D and higher: “right angles”
il iy = —1/2 Ut iy # 0 il iy # 0 means orthogonality!
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| Projection onto Orthonormal Bases |

PROJECTIONof 6 Orthonormal basis SAMPLES
onto B, B 1 O = T,
------ Nomebo T
51 Lo 1.9
| ]5’2 _—1 o) —0.5_
]

another orthonormal basis

* How can we calculate the projections?
* data point: [‘5] — opL + fpa, Or [z y] =opy + 6Py

» post-multiply by basis vectors: [z y|pi =, [z y|]p =1

By
> or: [0 8] =[z vy|B:;or, forall the data b,= 5| =|pB,

f3
projecting the data D
onto the basis B, Slide 19
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Using the SVD for Data
Analysis, Feature Extraction
and Clustering
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| Matrices Representing Ratings |

* Movies rated by Users (eg, Netflix, Amazon Video)

Movie — Full Die | Yojimbo Would | Dr. Hokkabaz
Metal | Hard Lie to Strangelove
User Name | Jacket You

!

A S 3 4 3 3 3 1 2 1

B 1 1 1 3 4 3 3 5 5

C 2 1 S 5 4 2 1

D 5 5 5 5 5 5 5 5 5

E 1 2 1 2 1 2 2 2 1

lighter colours § == EEE U Z VT
stronger ratings '

1 2 3 4 5 6 7 8 9

movie #

EE16B, Spring 2018, Lectures on SVD and PCA (Roychowdhury) Slide 21



1

2

=
o
3

4

Features of Rating Matrices |

Movie — Full Die | Yojimbo Would | Dr. Hokkabaz
Metal | Hard Lie to Strangelove
User Name | Jacket You
!

A 5 5 Z 5 5 5 1 2 1

1 1 3 2 3 3} 3} 3}
C 2 1 3 ) 4 2

D ) 5 ) ) ) 5 ) ) )

E 1 2 2 1 2 2 2 1
“most typical” col (movie) feature:

65% like D’s choices, 50% like A’s, _
40% like B’s, 35% like C’s “most typical” row (user) feature:
o1 171?7? 20% E’s likes SF more;

1 2 3
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4 5 6 7 8 9

movie #

<
++

action somewhat less;
and comedy even less

vi

07l = Lo

U1 Slide 22



Features of Rating Matrices (contd.)

2" most typical col (movie) feature:

55% like A’s choices, 70% unlike B’s,
35% like C’s, 15% unlike D’s,
negllglbly like E's

Ugﬁgﬁg

feature 2
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Movie — Full Die | Yojimbo Would | Dr. Hokkabaz
Metal | Hard Lie to Strangelove
User Name | Jacket You

b

A 3 3 4 5 3 3 1 2 1
B 1 1 3 4 3 3 3 3
C 2 1 1 5 3 4 2 1
D ) 3} 3 3} 5 5 5 5 5
E 1 2 1 2 1 2 2 2 1

2" most typical row (user) feature:

likes mostly action;
a bit less SF;
strongly anti-comedy

v2

|
S
o0

7

Vg Slide 23



| Projection in the Feature Basis |

Movie — Yojimbo Would | Dr. Hokkabaz
Lie to Strangelove
User Name You

1

A 4 5 3 5) 1 2 1
B 1 3 4 3 S 3 5
C 1 S 3 4 2 1 1
D 3 3 3 3} 3 3 )
E 1 2 1 2 2 2 1

* Express each col of A (movie column) as a linear
combination of col. features |° jo'gnovieqeatures

* e.d., Full Metal Jacket column:

=T

> o1 = Uy

:r—\mwr—\c:(

i=1,--

)
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= 11Uy + o1ty + 31Uz + - - - + as1Us

1
2
5
1
-~ “how much FMJ “how much FMJ

is like the most s like the 3™ most
typical movie” typical movie”

Projections of 1° col (FMJ)

onto column feature basis
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Clustering in Feature Bases

e Scatter plot of o, @

117

Movies classified by projections
on column (movie) features

clustering movies by col-feature similarity

®
2 Full Metal Jacket

these movies share similar
“typical movie” coeffs

°
On The Beach

°
Would I Lie to You

coeff of third col feature
o

2(’01 : A Space Odyssey

[
The Quiet Earth

coeff of first col feature
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° °
Dr. Strangelove Hokkabaz

coeff of third movie feature

and o, for all movies

userErOW:[l 21 2 1 2 2 2 1]
:65161T+652172T+65363T+---+B5517§’

Users classified by projection on
row (user) features

clustering users by movie similarity

s
E
&
0 -

these users share similar

-2~ “typical user” characteristics B

-4 -14

coeff of first movie feature
coeff of second movie feature
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Principal Component Analysis
(PCA)
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| Covariance Matrices |

each col is a type of data
each col has averagle 0 position, velocity)

RENRRY I

S _ k) €
— 3 8o 83
. X
(o]
NxM — = 1 1
~ o P
o A data matrix 332 = [ row of col means of A
A 352 \
— 2
(assumed real) ;.3? subtract
) row-of-means
— =2 from EACH
row of A
° S _ 1 =
(mxm matrix)] — n A

covariance matrix

of A
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| Covariance Matrix — example |

e 3 x 2 example
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| Covariance Matrices: Properties |

e 52 LAT]

T
* S is square and symmetric: s — sTor s;; = sj;
* The diagonal entries of S are real and 20

n

2 A 1 N : .
¢ 57 S5 = — E a’; > 0 : variance of i" col of A
n
=1
- _
51 5122 513 "0 Slm covariance
So1 S5 S23 - Som / matrix
2
e ¢ — |S31 532 S3 ' S3m
2
| Sm1  Sm2 Sm3 Sm |

e can also show: |s;;| < s;5;
> using the Cauchy-Schwartz inequality
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| The Correlation Matrix |

O R — (symmetry); _ |7 =
w\ sisj 'Y It y Y) :>‘7“zy‘<_1
correlation

1 712 T3 T
r21 I ros T2m

e p— |71 r3 1 T3m

[ "m1 Tm2 Tm3 1 _

correlation

matrix
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Correlation: Geometric Intuition

r,, = 0.51
3r 3 o X o
of
L
o
2t oL
oL
1t Gk
. L
or or
=l > o > 0fF
b )
Al
o At
2
21 o © s
3+ e} o
-3r 3 ) [
al
| 4l ! ! I ! ! | | |
“ 4 8 2 A 0 1 2 3 4
X X % 5
r,=0.87
12 "
i 2
ol
4L
i
ol
> -
ok
Ak
1t
o
ol
a3l
3f
4 3 2 A 0 1 2 3 4

correlation provides each point is a row
some insight ...

... but it leaves a lot out N 1 D Y Y
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| The Intuition behind PCA |

* PCA: finds (orthogonal) “main axes along which
the data lie”: the principal components

* provides weights indicating “strength” of each axis

principal
component 1

<« -« principal
component 2

* starting point for PCA: the covariance matrix S
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PCA: The Procedure

* Eigendecompose the covariance matrix

2

[ s7 S12 S13 ccc Sim
2
S21 59 §23 0 S2m / >
e S — |53 8532 S% " S83m | = pPAPTY S = o —
— . — 1 P2 P3 " DPn
Sm1  Sm2  Sm3 sz,
: )‘2;//6&’ 8 cbvih)e /!)rthon/o:mal
— m )\/ c9/Q
* \/\; =the welghts s 17%0 these are the PCs
* (i.e., the variances) | Mo
with i\ > >X3>--->X, >0

* eigenvectors p; = the principal components
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Principal Components of the Data

corr=0.490488
PC: var=0.86803:

12 12
4+ o 3t e}
O corr=0.271473
O corr=0.0160364
PC: var=0.78474
3r i ol
0o &0 %
2 o )
0% o 1k SIS
oo <
1 o ° S
P~ o@)<< > 0r
(
ot ° <
o 4 o® o
¥ o
At )
@ o
059 ®0 o 2r ©
2 600 © SR,
o} o0&
9 S P e L ! ! 9 ! ‘ ‘ ‘
-4 3 2 1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3
X x
- —
r.,=0.86 r.,=0.96
- 12 12
O corr=0.859126 3r O corr=0.963561
PC: var=0.95380 PC: var=0.96914
ar 2l (9| PG: var=0.13202
1 N
> 0f > 0fF
aF
At
8 2t
2
3F
3 2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3 4

each point is a row

First PC always captures
direction of

O corr=0.00720795
PC: var=0.99653:
—— PC: var=0.12950

r,, = 0.69

corr=0.691308
PC: var=0.908922

O corr=0.113296
PC: var=0.98778:
—— PC: var=0.13079

maximum data spread —
(2" PC: max spread in
orthogonal direction)
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O corr=0.557136
PC: var=0.97269
—=— PC: var=0.12630.

O corr=0.800043
PC:var=1.01514
—— PC: var=0.13007:
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| PCA: Why it Works: The Flow |

* First: establish some properties of P and A

* properties of real symmetric matrices
> real eigenvalues
> real set of orthonormal eigenvectors

e properties of real AT A
> eigenvalues 2 0 |
* Express data in eigenvector basis
* project each data point onto eigenvectors
* Show that the covariance matrix of the projected

data is diagonal
* the variances of the projections along each axis/PC

* First PC maximizes variance along any 1D
projection
e 2" PC maximizes remaining variance; and so on
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| Properties of Covariance Matrices |

o If S is a real mxm symmetric matrix (s, = s)
* 1. its eigenvalues are all real
> Sp=Ap. S symmetric — 578 = A\pT. — 5755 = M p = \|p||?
> Sreal » Sp=Ap.— pLSp= N\ p=\p|>
> hence \A||p]|* = ||l — A = X— \is real.

* 2. A set of real eigenvectors can be found (see the notes)

* 3. The eigenvectors form an orthonormal set (basis).
- (see the notes)

e [f Sisin the form ATA (A real)
* 4. its eigenvalues are all = 0.

> ATAp = p — p ATAF = p'p — (Ap)  Ap = p' P

, s o AP
= [[471° = MAI® = A= T
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| PCA Basis Diagonalises the Data |

* eigenvectors orthonormal —» pp? — 1 — pT — p-1
* eigendecomposition of S: S = PAP?

* project rows of (zero-mean) A in basis P: F = AP
e columns of F are the projections along p;
* Let G be the co-variance matrix of F: G 2 (F' F)/n
e nGi=FTF = PTATAP = nPTSP = nPTPAPTP = nA
: . Data projected on PC basis
T e ecomes UNCORRELATED
* the diagonal entries are the variances of the data
projected along p; (recall: from defn. of covariance matrix)

EE16B, Spring 2018, Lectures on SVD and PCA ( S Slide 37



| Why do PCs Align with Visual Axes? |

Why this?
and not this?

* S0 far have shown that PCs are orthonormal
* data projected onto them becomes uncorrelated

* but why is the first PC aligned with the
direction of maximum spread?

e Key property of PCA- proof — notes
* consider any norm-1 vector (“direction”) p
* project the data along it: A5

e find the variance of the prOJected data: —(A@T(Aﬁ)

e the first PC p1 maximizes this varlance (the max is ;)

> 2" PC: maximizes variance along directions orthogonal to p;

— 3 PC: maximizes var. along dirs. orthogonal to p1 and p>; and so on
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| PCA: the Connection with the SVD|

e Suppose you run an SVD on the data;: A = UXV7T
* the covariance matrix is: -

> S 2 121771 — lVZTUTUEVT —
/A /A

> recall PCA: S =|P|A|P" [-#'PENTICAL FORN f
diagonal and 2 0

e i.e., can use the SVD of A for PCA:

2
a 9

> just set \; — and P £ V (no need to even form S)!

S
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Computing SVDs via Eigendecomposition

. . . ETE T . .
* Prev. slide: SVD: S=vV ——V*: PCA: s = PA PT

T

* Q: how to calculate an SVD of a matrix A?
* using eigendecomposition

* A: just use the above insight (pcA/eigendecomposition)!
e form S £ AT A, eigendecompose S = PAP!

A A more work, because (we had assumed) n2 m
eseto;, =V, V=P I

NxN
* what about U?
> just eigendecompose S £ AAT = QAQ” ; then U £
> can also get V from the same eigendecomposition

T~
s A=USV > UTA=5VT—> ATy = V5T —» Al

A = = . . O‘

e set 0, = /)\z' if o, =0, choose v, arbltrarlly to —> U4
complete orthonormal basis for i=1.--- . m

) )

* why didn’t we subtract means from A and normalize by n?
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| Who Invented the SVD? |

e SVD: “Swiss Army Knife” of numerical analysis

Camille Jordan Erhardt Schmidt James Joseph  Hermann Weyl
1838-1922 1878-1959  Sylvester 1814-97 1885-1955

01

’Eugenio Beltrami

1835-1900
proposed the SVD

via eigendecomposition
of ATAorAAT

CALIFORNIA 008 1
Gene Golub Bill Kahan Jim Demmel

1932-2007 UCB EECS UCB EECS
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| Summary: SVD and PCA |

e Singular Value Decomposition (SVD)

e useful for “low-rank approximations” of matrices
> image analysis and compression
> general data analysis, finding important features, clustering

e Covariance, Correlation and PCA

* visualizing data as scatter plots
e covariance and correlation matrices of data
* Principal Component Analysis

> eigenvecs of covariance matrix: principal components

* directions along which data varies maximally
- dropping later PCs can, eg, clean out (small) noise

> eigenvalues correspond to variances along PCs

> SVD can be used instead of eigendecomposition
* eigendecomposition of covariance matrix: performs SVD
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